		BRIDGES T	O BE CONSTRUCTED	
BRIDGE NO.	ROAD NO.	LENGTH	STA. TO STA.	LOCATION
1/2A	I-385 SB	201.85′	374+34.76 TO 376+36.6I	GARLINGTON RD. & GE RAILROAD OVERPASS
28	1-385 NB	201.50′	374+96.79 TO 376+98.29	GARLINGTON RD. & GE RAILROAD OVERPASS
3	I-385 NB CD	201.50′	376+37.60 TO 378+39.10	GARLINGTON RD. & GE RAILROAD OVERPASS
4	RAMP 8	148.17′	57+85.53 TO 59+33.70	1-385 NB CD OVERPASS
5	RAMP IA	1522.83′	72+79.42 TO 88+02.25	I-385 & I-85 OVERPASS
6	RAMP 4B	1962.83′	390+18.50 TO 409+81.33	I-385 & I-85 OVERPASS
7	RAMP 2B	475.00′	34+16.95 TO 38+91.95	I-85 OVERPASS
8	RAMP 3A	254.85′	297+8I.45 TO 300+36.30	I-85 OVERPASS
9	RAMP 2A	368.84′	7I+70.8ITO 75+39.65	I-85 OVERPASS
10	RAMP IB	220.05′	69+II.35 TO 7I+3I.40	RAMP 4B OVERPASS
12	1-385	497.17′	395+34.84 TO 400+32.0I	I-85 OVERPASS

BRIDGE PLANS BOUND UNDER SEPARATE COVER

ENVIRONMENTA	L PERMIT INFO	ORMATION	
USACE PERMIT	_X_YES	NO	
NEPA DOCUMENT	X YES	NO	
401 CERTIFICATION	_X_YES	NO	
OCRM CAP	YES	_X_NO	
NAVIGABLE WATERSSC	USCG	USACE	_X_N/A

3 DAYS BEFORE DIGGING IN SOUTH CAROLINA

CALL 811

SOUTH CAROLINA 811 (SC811) WWW.SC811.COM ALL UTILITIES MAY NOT BE A MEMBER OF SC811

> RAILROAD INVOLVEMENT? YES/ NO

	TRAFFIC DATA	
	I–85	I–385
2015 ADT	118,200	106,500
2035 ADT	174,700	171,400
TRUCKS	18 %	18 %

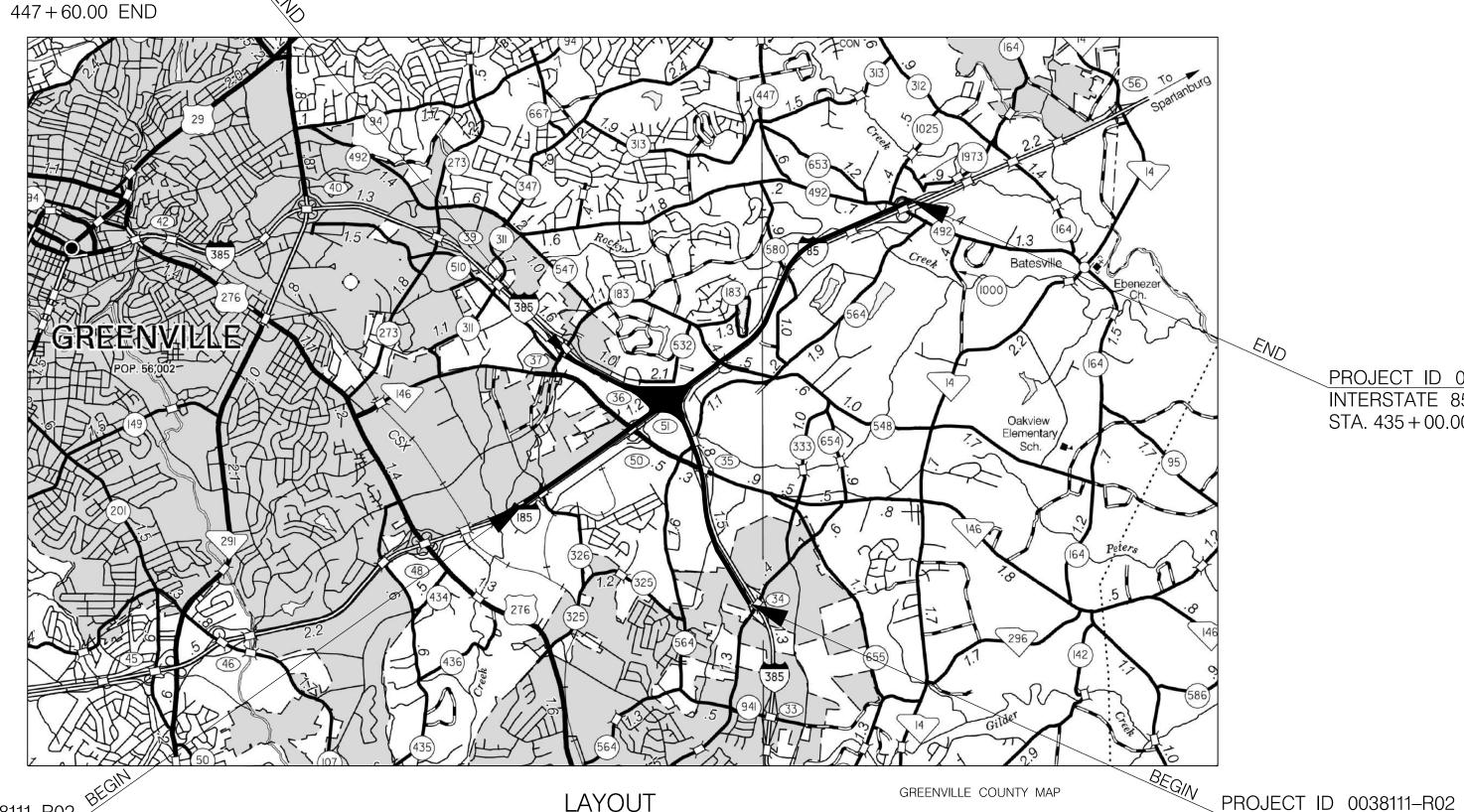
REVIS	SIONS	DESCRIPTION	BY	CHECKED
NO.	DATE	DESCRIPTION	БТ	CHECKED
\triangle	1/27/16	SHEET TOTAL REVISED	D.R.R.	B.G.N.
2	5/02/16	SHEET TOTAL REVISED	D.R.R.	B.G.N.
3	5/12/16	SHEET TOTAL REVISED	D.R.R.	B.G.N.
4	6/17/16	SHEET TOTAL REVISED	D.R.R.	R.L.K
<u></u> \$	7/8/16	SHEET TOTAL REVISED	D.R.R.	R.L.K
<u></u>	8/9/16	SHEET TOTAL REVISED	D.R.R.	R.L.K
À	8/18/16	SHEET TOTAL REVISED	D.R.R.	R.L.K

INTERSTATE 385

RELEASE FOR

CONSTRUCTION PLANS

PROPOSED PLANS FOR


GREENVILLE COUNTY

PROJECT ID 0038111 - R02

INTERSTATE 85 / 385 INTERCHANGE

FROM: 0.20 MILES SOUTH OF S-326 PROJECT ID 0038111-R02

TO: ROAD S-492

LAYOUT PROJECT ID 0038111-R02 (NOT TO SCALE) INTERSTATE 85 I-385 CD's 203+00.00 BEGIN

NET LENGTH OF ROADWAY	4.394	MILES	2.551	MILES	9.035	MILES	2.867	MILES	18.757	MILES
NET LENGTH OF BRIDGES	-	MILES	0.171	MILES	0.938	MILES	0.038	MILES	1.147	MILES
NET LENGTH OF PROJECT	4.394	MILES	2.722	MILES	9.973	MILES	2.905	MILES	19.993	MILES
LENGTH OF EXCEPTIONS	-	MILES	-	MILES	-	MILES	-	MILES	-	MILES
GROSS LENGTH OF PROJECT	4.394	MILES	2.722	MILES	9.973	MILES	2.905	MILES	19.993	MILES

EQUALITIES IN STATIONING

NONE

NOTE: EXCEPT AS MAY OTHERWISE BE SPECIFIED ON THE PLANS OR IN THE SPECIAL PROVISIONS, ALL MATERIALS AND WORKMANSHIP ON THIS PROJECT SHALL CONFORM TO THE SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS FOR HIGHWAY CONSTRUCTION (2007 EDITION) AND THE STANDARD DRAWINGS FOR ROAD CONSTRUCTION IN EFFECT AT THE TIME OF LETTING.

8	9/12/16	BRIDGE LENGTHS I/2A, 2B, 3. SHT. TTL RVSD	D.R.R.	12	1/12/17	SHEET TOTAL REVISED
<u></u>	9/28/16	SHEET TOTAL REVISED	B.G.N.	13	2/2/17	SHEET TOTAL REVISED
\triangle	10/21/16	SHEET TOTAL REVISED	B.G.N.	14	3/16/17	SHEET TOTAL REVISED
\bigwedge	10/28/16	SHEET TOTAL REVISED	B.G.N.	15	12/18/17	SHEET TOTAL REVISED

PROJECT ID 0038111-R02

STA. 435 + 00.00 END

INTERSTATE 85

Disturbed Area = 160.5 Acre(s) Permitted Area = 349.7 Acre(s)

CONTRACT ID 5384210

Hydraulic Design Reference for these plans in the:

2009

Edition of SCDOT'S "Requirements for Hydraulic Design Studies"

Design Reference for these plans is the:

2001

AASHTO "A Policy on Geometric Design of Highways and Streets"

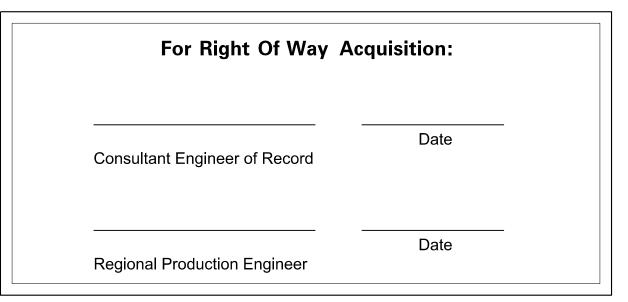
UNLESS OTHERWISE NOTED ON TYPICAL SECTION

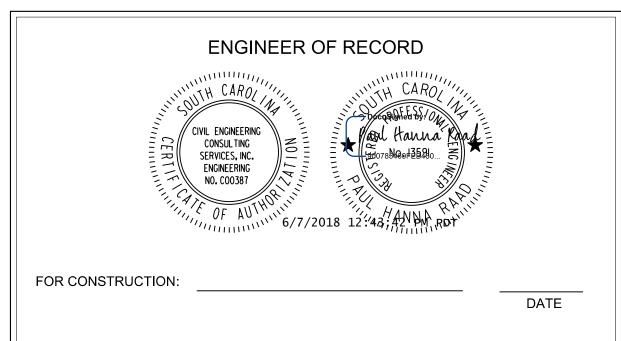
NPDES PERMIT INFORMATION

Approximate Location of Roadway is Begin 34° 50' 20' N Latitude 82° 17' 26' W End

> 34° 50' 02' N 82° 17' 27' W

Hydraulic and NPDES Design

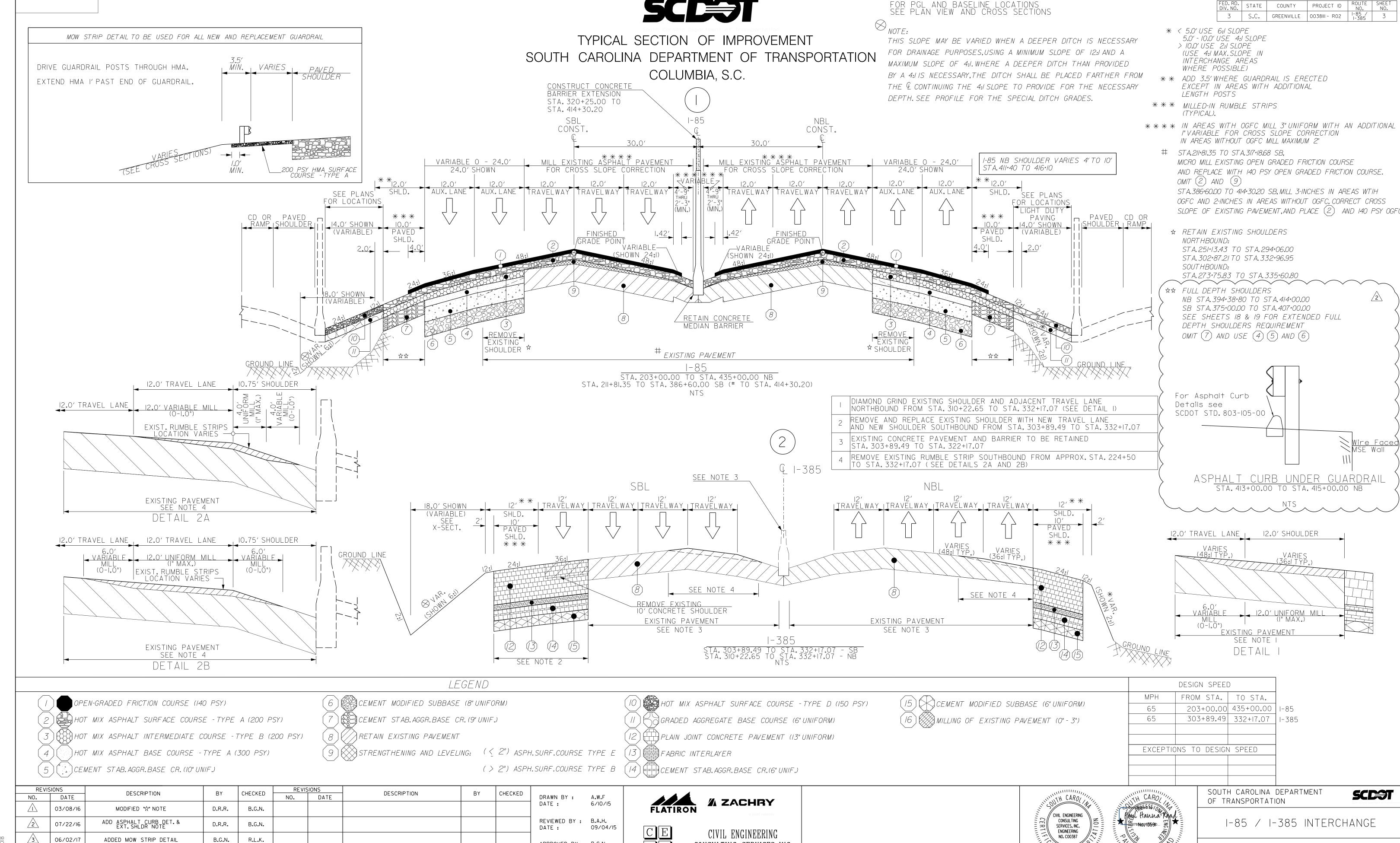

CECS, Inc.


Designs may be obtained from the SCDOT Regional Production Group

provided by:

SCDOT REVIEW	RIGHT-C	OF-WAY DATE	CONSTRI	JCTION DATE
PRECONSTRUCTION SUPPORT - ROAD				
PRECONSTRUCTION SUPPORT - STRUCTURES				
RPG - DESIGN MANAGER				
RPG - PROGRAM MANAGER				

THE INITIALS ABOVE DO NOT RELIEVE THE ENGINEER OF RECORD OF THE RESPONSIBILITY TO DESIGN THIS PROJECT IN ACCORDANCE WITH ALL APPLICABLE CRITERIA.



CONSULTING ENGINEERING FIRM **%** ZACHRY CIVIL ENGINEERING CONSULTING SERVICES, INC 2000 PARK STREET SUITE 201 COLUMBIA, S.C. 29201

B.G.N.

INTERSTATE 385

303 + 89.49 BEGIN

CONSULTING SERVICES, INC.

APPROVED BY : B.G.N.

DATE:

09/20/15

ADDED MOW STRIP DETAIL

REVISED I-85 SB END STA., ADDED I-85 NB REDUCED SHOULDER NOTE

06/02/17

5/3/18

R.L.K.

P.H.R.

TYPICAL SECTION

GEOTECHNICAL NOTES

PROJECT ID 3 S.C. GREENVILLE 0038III - R02

MAIN INTERCHANGE

The following notes apply to borrow materials:

 Provide borrow materials meeting the following minimum requirements:
 A sandy material (35% or less passing 0.075 mm) with a minimum total soil unit weight, γ_∞ of 110 pcf, with a maximum dry density exceeding 100 pcf.
• Minimum friction angle, φ, of 30°and cohesion, c, of 50 psf for embankment

No. 57 Stone backfill for Mechanically Stabilized Earth Walls

Walls 32 and 36 will require an embankment fill with a minimum friction angle, φ, of 32° and cohesion, c, of 50 psf. This requirement is between alignment Ramp 4. Stations 50+50 and 52+50.

In addition, determine the moisture-density relationship and classification of the material. Test and submit the classification, moisture-density relationship, and soil strength parameters of the material to the Engineer for acceptance. An AASHTO certified laboratory is required to perform the testing. Contact the RPG Geotechnical Engineer for a list of locally available AASHTO certified laboratories. The Department may perform independent testing to assure quality.

Determine the friction angle and cohesion using either direct shear testing or consolidated-undrained triaxial shear testing with pore pressure measurements. Direct Shear testing shall only be performed on soils with a fines content of less than 25 percent. Classification testing includes grain-size distribution with wash #200 sieve, moisture plasticity testing and natural moisture content. Use the Standard Proctor test to determine the moisture-density relationship. Remold all samples used in shear etrangth testing to 05 percent of the Standard Proctor. samples used in shear strength testing to 95 percent of the Standard Proctor density. Conduct shear strength testing at the initial selection of the borrow pit, any subsequent changes in borrow pits, and for every 10,000 cy of materials placed. Perform classification testing for every 50,000 cy of materials placed, including the material used for the shear strength testing. Additional shear testing may be required if, in the opinion of the RCE, the materials being placed are different from those originally tested.

If these minimum criteria cannot be met, provide the soil parameters for the intended borrow excavation material for the project site to the Engineer for review and acceptance. After acceptable borrow material is obtained, compact the fill to the required finish grade line using the compactive effort indicated in the Standard Specifications for Highway Construction, Section 205 (Embankment Construction).

The following notes apply to muck excavation:

Any areas identified on the plans and any additional areas that are discovered to deflect or settle may require corrective action as directed by the RCE. This may include undercutting, placing No. 57 stone aggregate that is separated from other borrow materials by a geotextile for separation of sub-grade and sub-base, and/or additional compactive effort to the approval of the RCE.

In areas that require mucking or undercutting, borrow material soil may be placed as a bridge lift as long as the grade on which the material is being placed is at least 2 feet above ground water level. In the event that groundwater does not allow backfilling with a borrow material soil, use a No. 57 stone as the bridge lift material. Borrow material bridge lifts may not exceed a 2-foot thickness. The depth at which mucking or undercutting is required is dependent upon encountering a suitable bearing material within the excavation or if a predetermined elevation or depth is required. In most cases, do not undercut more than 3 to 5 feet. The RCE will determine the final mucking or undercutting thickness, unless otherwise specified in the project plans and/or specifications. If a suitable bearing soil is not encountered within this depth range, place a P1 biaxial geogrid with an aperture size of less than or equal to 1 inch and in accordance with the project special previsions beneath a 2-foot thick bridge lift of No. 57 stone. If additional compacted borrow material soil is needed to reach grade, place a geotextile for separation of sub-grade and sub-base between the No. 57 stone and the overlying compacted soil. A bridge lift consisting of borrow material soil may not be placed within 3 feet of the base of the pavement section. Place only compacted borrow material soil or No. 57 stone within this zone. Reference the Standard Specifications for Highway Construction, Earthwork Section, Division 200.

The following notes apply for settlement and displacement monitoring:

The contractor shall establish a monitoring program consisting of settlement instruments. The settlement monitoring program must include establishing settlement monitoring instruments on the subgrade soils prior to fill placement, and at design pavement subgrade elevation. Settlement monitoring instruments are required at a spacing of every 100 feet along MSE Walls and every 500 feet along embankments with new fill thicknesses exceeding 20 feet. Instruments shall be established at the centerline of road and edge of pavement. Settlement monitoring shall continue until three consecutive measurements demonstrate the rate of settlement is less than 0.1 inches per year. No more than one measurement shall be obtained on a single day.

A minimum of 2 measurements shall be obtained on monuments prior to fill placement, and instruments shall be measured weekly during fill placement. Instrumentation measurements shall be provided to the Geotechnical Engineer within 24 hours of measurements for interpretation. Interpreted results shall be provided to the RCE.

The following notes apply to slope construction:

Where the new fill meets the existing slope, the existing slope shall be benched to limit the potential for a preferential failure surface and to allow compaction at the interface. Benches shall have a minimum horizontal length of 8 feet and a vertical rise of no more than 3 feet. Fill slopes of 2H:1V or steeper shall be overbuilt (i.e. fill should temporarily extend beyond the final slope face) to allow compaction at the slope face. After compaction is complete, the slope may be regraded to the final inclination.

Should seeps or thick lenses of highly plastic soils be observed in the planned fill and cut slopes that are steeper than 2H:1V, ECS must be contacted to determine if the steeper slopes may be constructed as planned or if slope flattening or reinforcing is required. Similarly, if soft or wet ground conditions are observed at the base of planned fill embankments, the QA representative must determine the limits of undercutting required or required in-situ treatment.

I-85 STA. 375+00 TO PELHAM RAMP

The following notes apply to borrow materials:

Provide borrow materials meeting the following minimum requirements:

A sandy material (35% or less passing 0.075 mm) with a minimum total soil unit weight, γ, of 110 pcf, with a maximum dry density exceeding 100 pcf. • Minimum friction angle, φ , of 30° and cohesion, c, of 50 psf for embankment fill, alternatively embankment fill may consist of a minimum friction angle (φ) of 34° with zero cohesion.

No. 57 Stone backfill for Mechanically Stabilized Earth Walls

In addition, determine the moisture-density relationship and classification of the material. Test and submit the classification, moisture-density relationship, and soil strength parameters of the material to the Engineer for acceptance. An AASHTO certified laboratory is required to perform the testing. Contact the RPG Geotechnical Engineer for a list of locally available AASHTO certified laboratories. The Department may perform independent testing to assure quality.

Determine the friction angle and cohesion using either direct shear testing or consolidated-undrained triaxial shear testing with pore pressure measurements. Direct Shear testing shall only be performed on soils with a fines content of less than 25 percent. Classification testing includes grain-size distribution with wash #200 sieve, moisture plasticity testing and natural moisture content. Use the Standard Proctor test to determine the moisture-density relationship. Remold all samples used in shear strength testing to 95 percent of the Standard Proctor density. Conduct shear strength testing at the initial selection of the borrow pit, any subsequent changes in borrow pits, and for every 10,000 cy of materials placed. Perform classification testing for every 50,000 cy of materials placed, including the material used for the shear strength testing. Additional shear testing may be required if, in the opinion of the RCE, the materials being placed are different from those originally tested.

If these minimum criteria cannot be met, provide the soil parameters for the intended borrow excavation material for the project site to the Engineer for review and acceptance. After acceptable borrow material is obtained, compact the fill to the required finish grade line using the compactive effort indicated in the Standard Specifications for Highway Construction, Section 205 (Embankment Construction).

The following notes apply to muck excavation:

Any areas identified on the plans and any additional areas that are discovered to deflect or settle may require corrective action as directed by the RCE. This may include undercutting; placing No. 57 stone aggregate that is separated from other borrow materials by a geotextile for separation of sub-grade and sub-base, and/or additional compactive effort to the approval of the RCE.

In areas that require mucking or undercutting, borrow material soil may be placed as a bridge lift as long as the grade on which the material is being placed is at least 2 feet above ground water level. In the event that groundwater does not allow backfilling with a borrow material soil, use a No. 57 stone as the bridge lift material. Borrow material bridge lifts may not exceed a 2-foot thickness. The depth at which mucking or undercutting is required is dependent upon encountering a suitable bearing material within the excavation or if a predetermined elevation or depth is required. In most cases, do not undercut more than 3 to 5 feet. The RCE will determine the final mucking or undercutting thickness, unless otherwise specified in the project plans and/or specifications. If a suitable bearing soil is not encountered within this depth range, place a P1 biaxial geogrid with an aperture size of less than or equal to 1 inch and in accordance with the project special provisions beneath a 2-foot thick bridge lift of No. 57 stone. If additional compacted borrow material soil is needed to reach grade, place a geotextile for separation of sub-grade and sub-base between the No. 57 stone and the overlying compacted soil. A bridge lift consisting of borrow material soil may not be placed within 3 feet of the base of the pavement section. Place only compacted borrow material soil or No. 57 stone within this zone. Reference the Standard Specifications for Highway Construction, Earthwork Section, Division 200.

The following notes apply for MSE Wall Subgrades:

Prior to construction of the leveling pad and MSE fill, the RCE shall verify that the retaining wall is founded on subgrade materials possessing the minimum allowable bearing capacity noted on wall plan and elevation sheets. If the RCE determines that the subgrade is unacceptable for placement of MSE fill, the contractor shall undercut the subgrade to the limits directed by the RCE. Unacceptable subgrade materials include, but are not limited to, all high plasticity clays and elastic silts (CH, MH), low plasticity clays and silts (CL, ML) with an unconfined compressive strength less than 2,000 psf, and deleterious debris. Replacement of undercut material will be with Backfill Material, meeting requirements outlined in the SCDOT Standard Specifications for Highway Construction.

The foundation area for the MSE walls might have scattered pockets of soft soils that might be present at the surface or just below the surface for the base of the MSE fill. These soft pockets are only expected to extend a few feet below the base of the MSE fill. The quality assurance representative shall proofroll the subgrade in this area and/or conduct dynamic cone tests at regular intervals to determine that the subgrade meets the requirements of the paragraph above.

There are several locations along the roadway alignment where proposed drainage structures are situated in front of (i.e. parallel) MSE walls, or where new and existing draining structures pass beneath the MSE walls. Where new pipes are parallel to the proposed wall, the pipe should be installed prior to the proposed wall or the wall design should account for the temporary reduction in passive resistance. Where pipes pass beneath walls, the pipes should be designed to account for the increased loading associated with the wall backfill. We recommend the ten of each pipe be cityeted a minimum of 1 feet below the bettern of retaining the top of each pipe be situated a minimum of 1 foot below the bottom of retaining.

The following notes apply for settlement and displacement monitoring:

The contractor shall establish a monitoring program consisting of settlement instruments. The settlement monitoring program must include establishing settlement monitoring instruments on the subgrade soils prior to fill placement, and at design pavement subgrade elevation. Settlement monitoring instruments are required at a spacing of every 100 feet along MSE Walls and every 500 feet along embankments with new fill thicknesses exceeding 20 feet. Instruments shall be established at the centerline of road and edge of pavement. Settlement monitoring shall continue until three consecutive measurements demonstrate the rate of settlement is less than 0.1 inches per year. No more than one measurement shall be obtained on a single day.

A minimum of 2 measurements shall be obtained on monuments prior to fill placement, and instruments shall be measured weekly during fill placement. Instrumentation measurements shall be provided to the Geotechnical Engineer within 24 hours of measurements for interpretation. Interpreted results shall be provided to the RCE.

The following notes apply to slope construction:

Where the new fill meets the existing slope, the existing slope shall be benched to limit the potential for a preferential failure surface and to allow compaction at the fill should temporarily extend beyond the final slope face) to allow compaction at the slope face. After compaction is complete, the slope may be regraded to the final inclination.

Should seeps or thick lenses of highly plastic soils be observed in the planned fill and cut slopes that are steeper than 2H:1V, ECS must be contacted to determine if the steeper slopes may be constructed as planned or if slope flattening or reinforcing is required. Similarly, if soft or wet ground conditions are observed at the base of planned fill embankments, the QA representative must determine the limits of undercutting required or required in-situ treatment.

The following Plan Notes apply to Mechanically Stabilized Earth walls:

Reinforced Backfill (Granular Fill or stone.)

Internal Friction Angle (deg) = 36 Total Unit Weight = 120 pcf Surcharge Dead Load for Pavement Overlay = 140 psf **Active Earth Pressure Coefficient = 0.26**

Retained Backfill

Internal Friction Angle (deg) = 30 Total Unit Weight = 117 pcf Active Earth Pressure Coefficient = 0.33

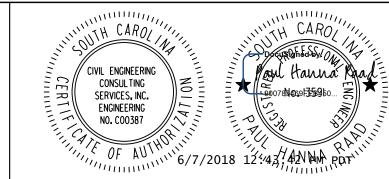
Wall 17 I-85 Station **Foundation Soils Total Internal Friction Angle (deg) = 26** Total Cohesion = 0 psf **Effective Internal Friction Angle (deg) = 26** Effective Cohesion = 0 psf

Wall Height Min. Breg Factored Bearing (Static) Factored Bearing (Seismic)

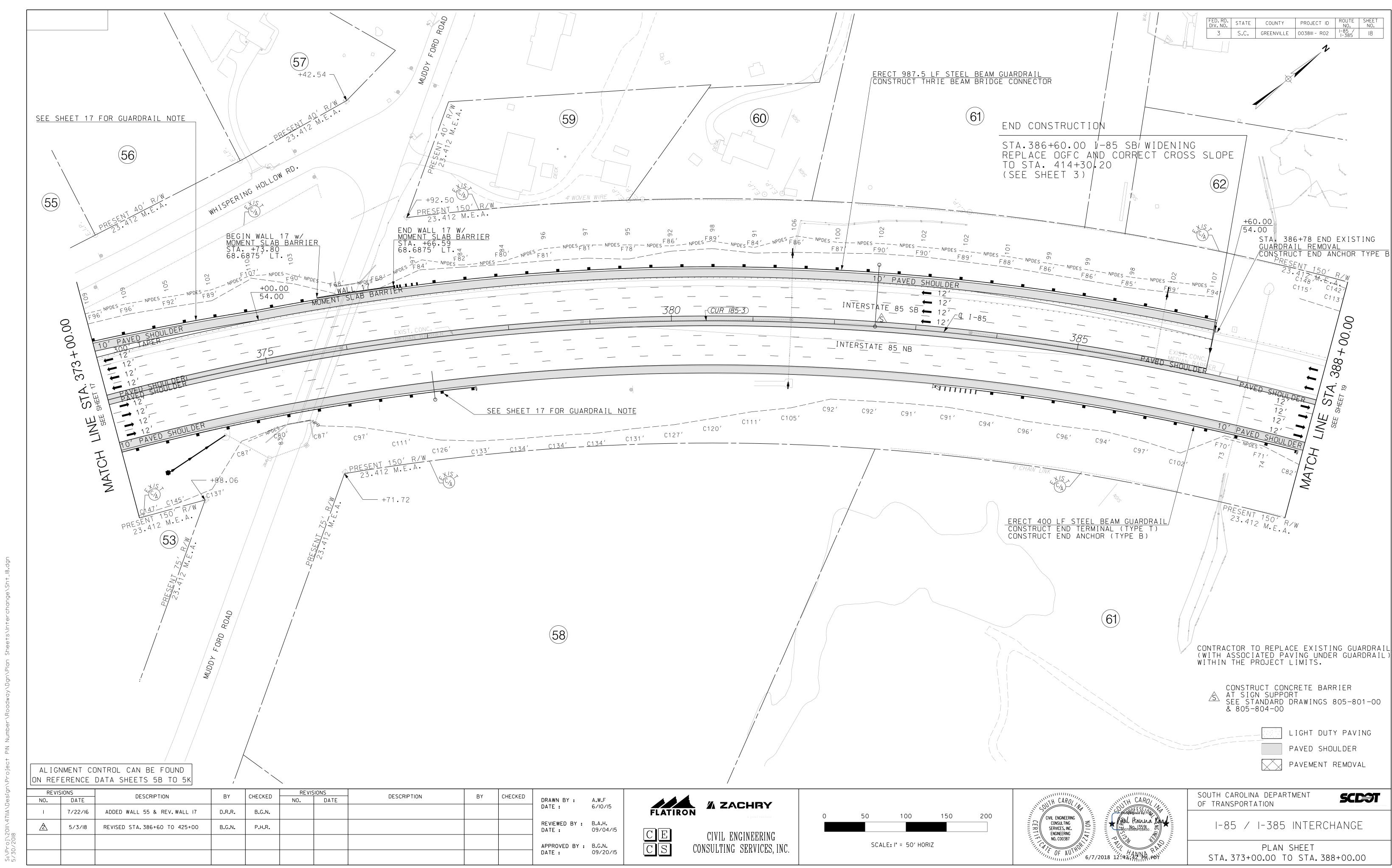
 $0 < H \le 7.5$ 14.5 ft 2,000 3,100

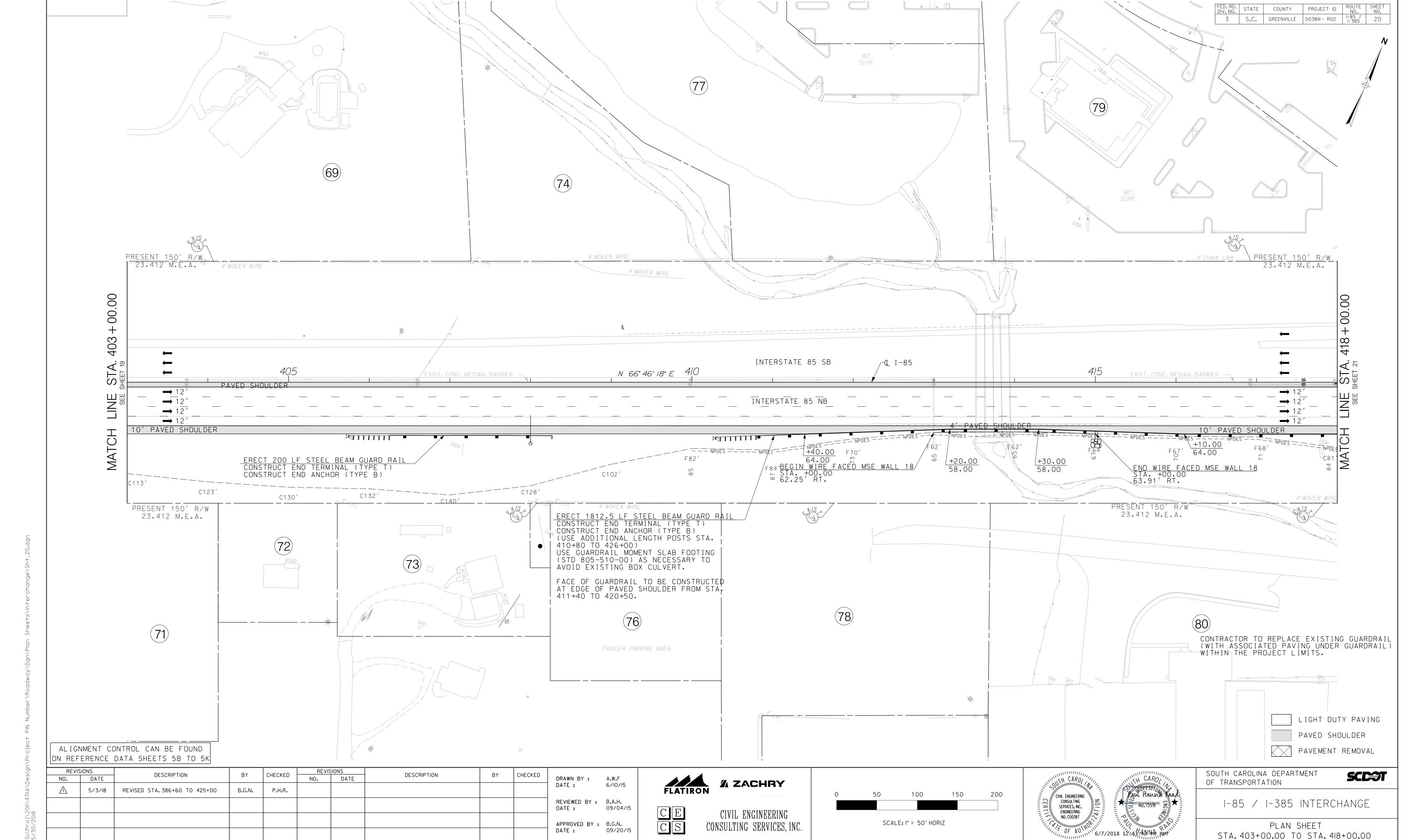
Wall 18 I-85 Station 413+00 to 415+00 Foundation Soils **Total Internal Friction Angle (deg) = 0** Total Cohesion = 1000 psf **Effective Internal Friction Angle (deg) = 26** Effective Cohesion = 100 psf

Wall Height Min. Breq Factored Bearing (Static) Factored Bearing (Seismic) 12.5 ft 3 < H ≤ 7 8,400


interface. Benches shall have a minimum horizontal length of 8 feet and a vertical rise of no more than 3 feet. Fill slopes of 2H:1V or steeper shall be overbuilt (i.e.

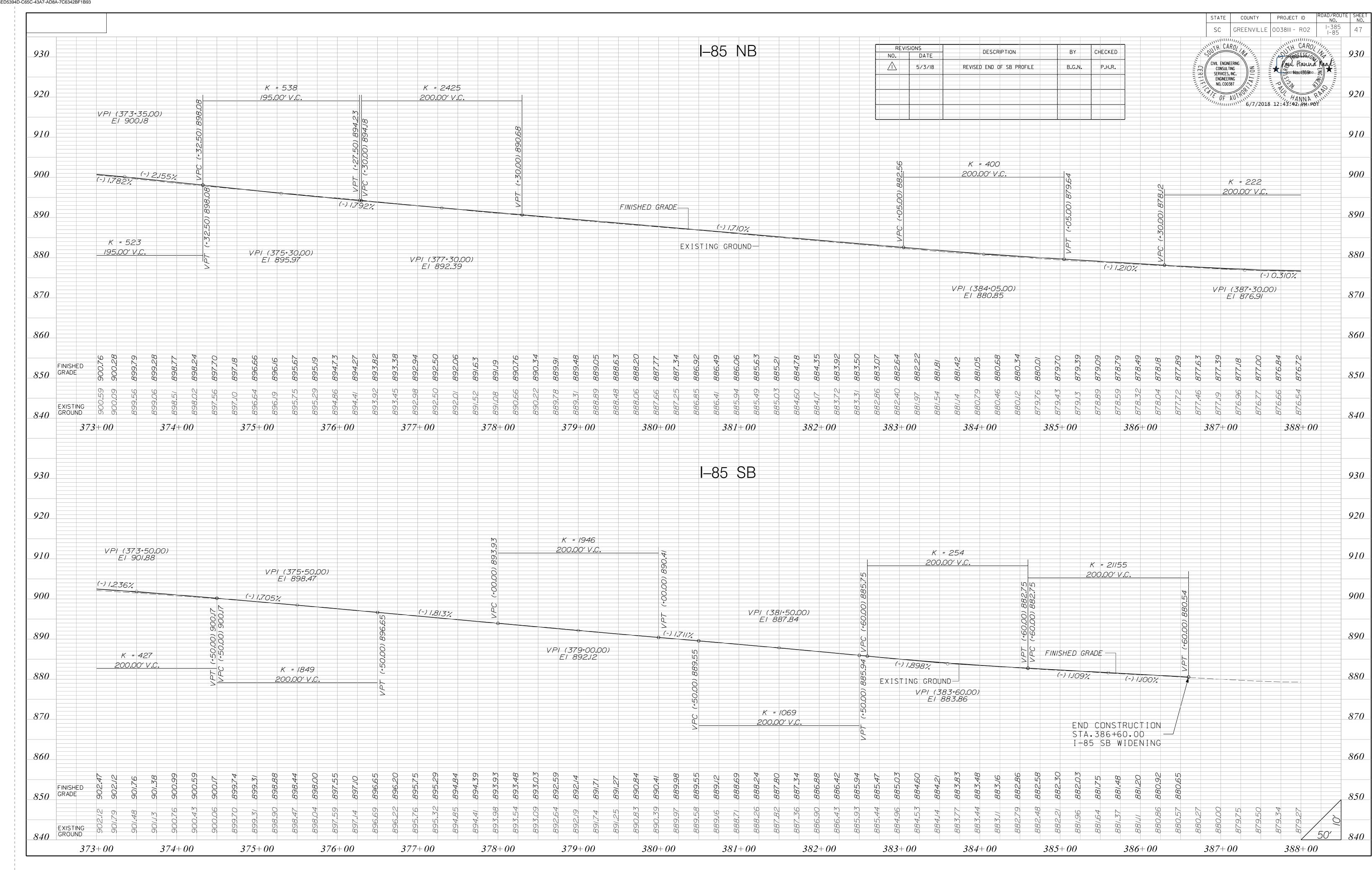
REVISIONS DESCRIPTION DESCRIPTION CHECKED CHECKED NO. DATE NO. DATE DRAWN BY : A.W.F DATE : 6/10/15 07/22/16 ADDED I-85 (ROCKY CREEK AREA GEOTECH. NOTES (ST. 375+00 - PELHAM) P.H.R. D.R.R. REVIEWED BY : B.A.H. 2 P.H.R. 5/3/18 REVISED WALL 18, REMOVED WALL 55 09/04/15 DATE : APPROVED BY : B.G.N. 09/20/15 DATE :

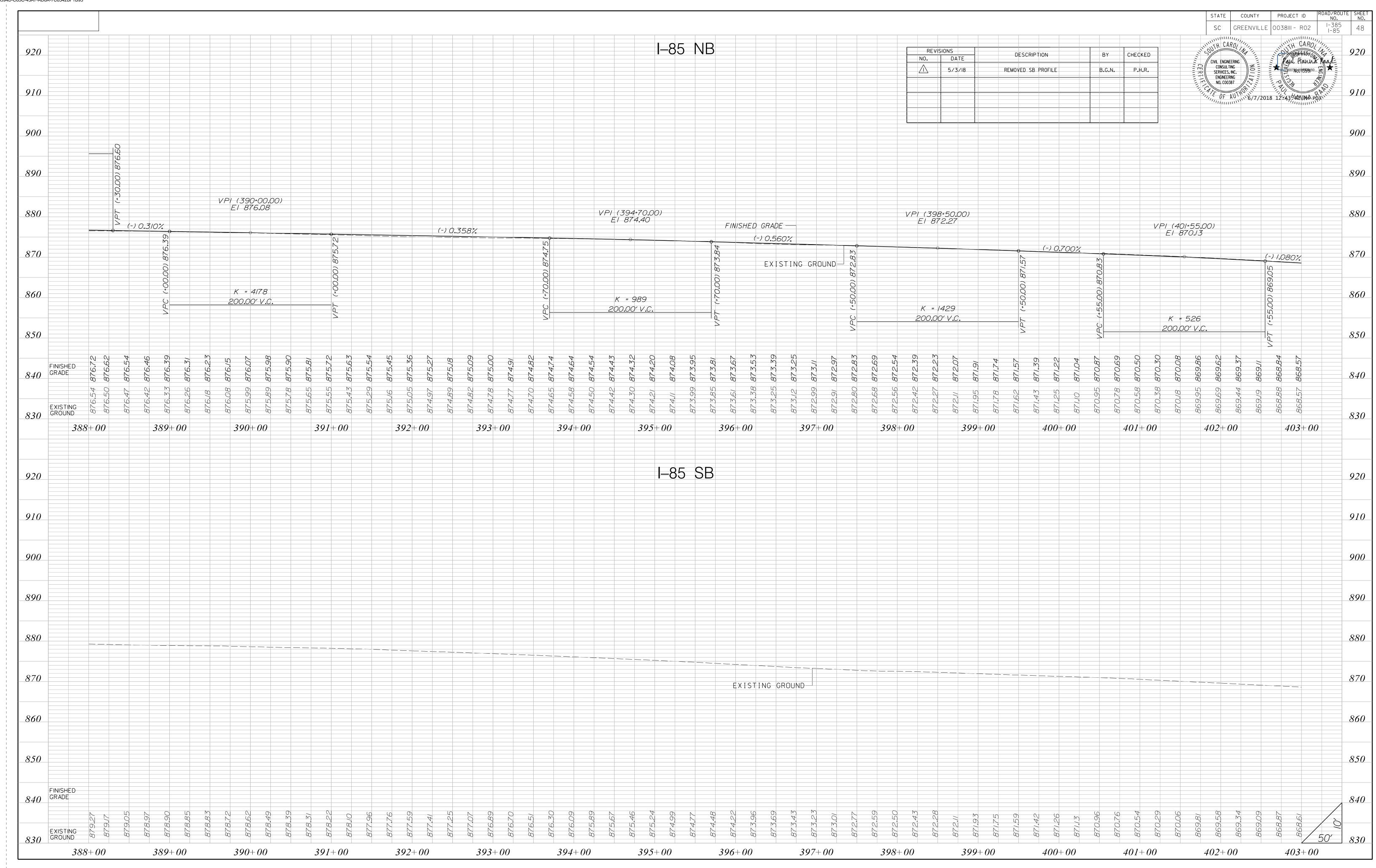


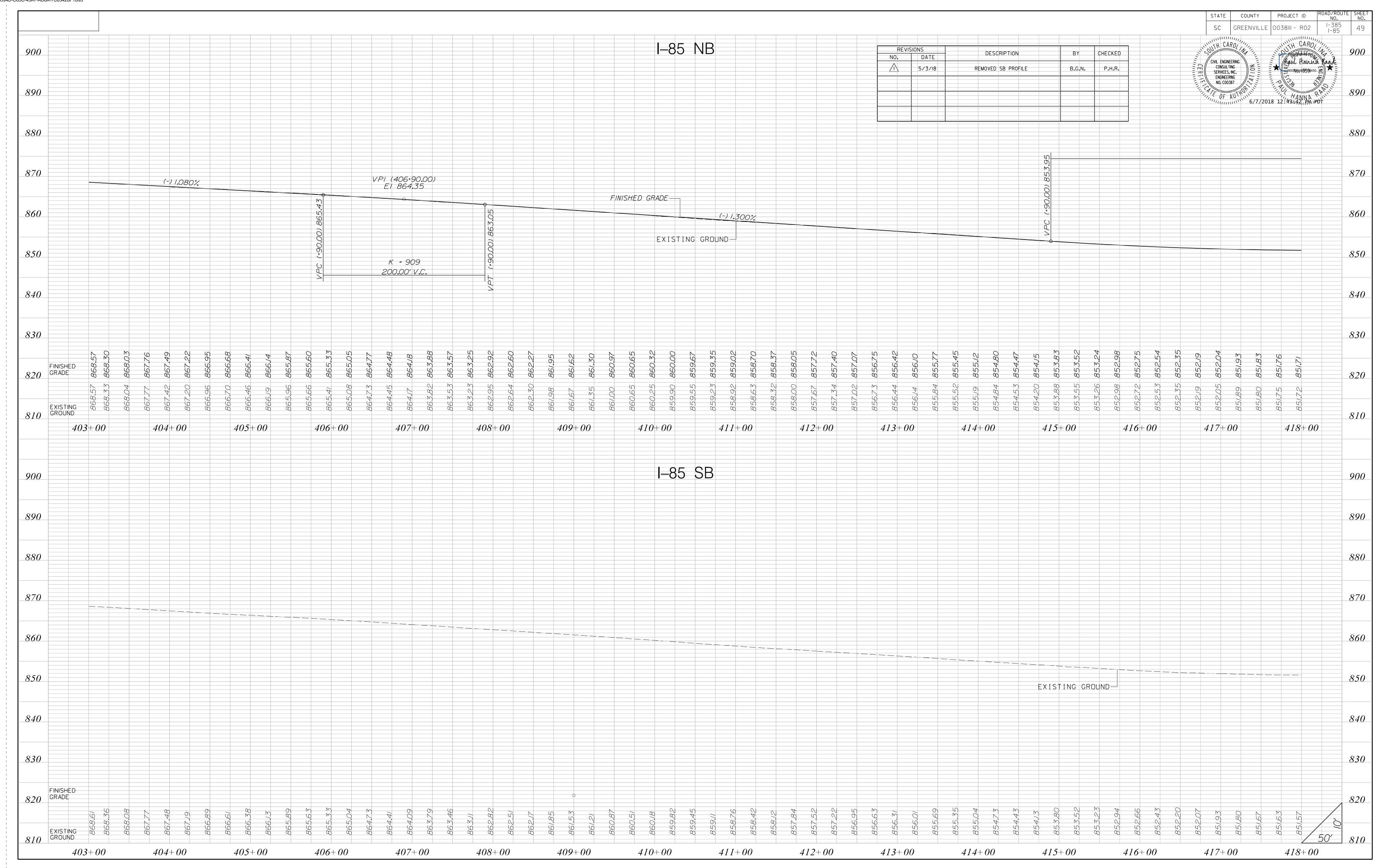

SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

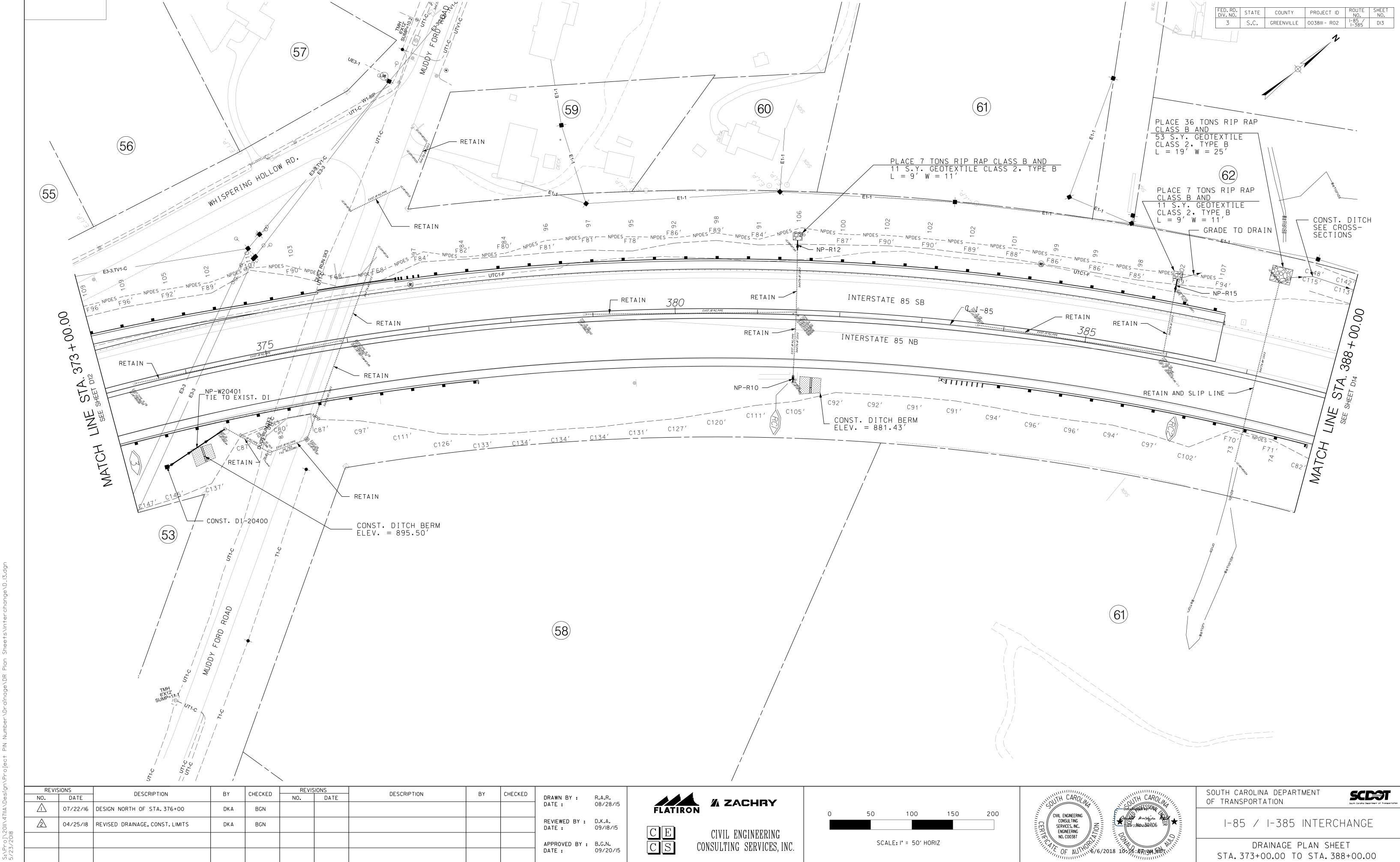
I-85 / I-385 INTERCHANGE

GEOTECHNICAL NOTES

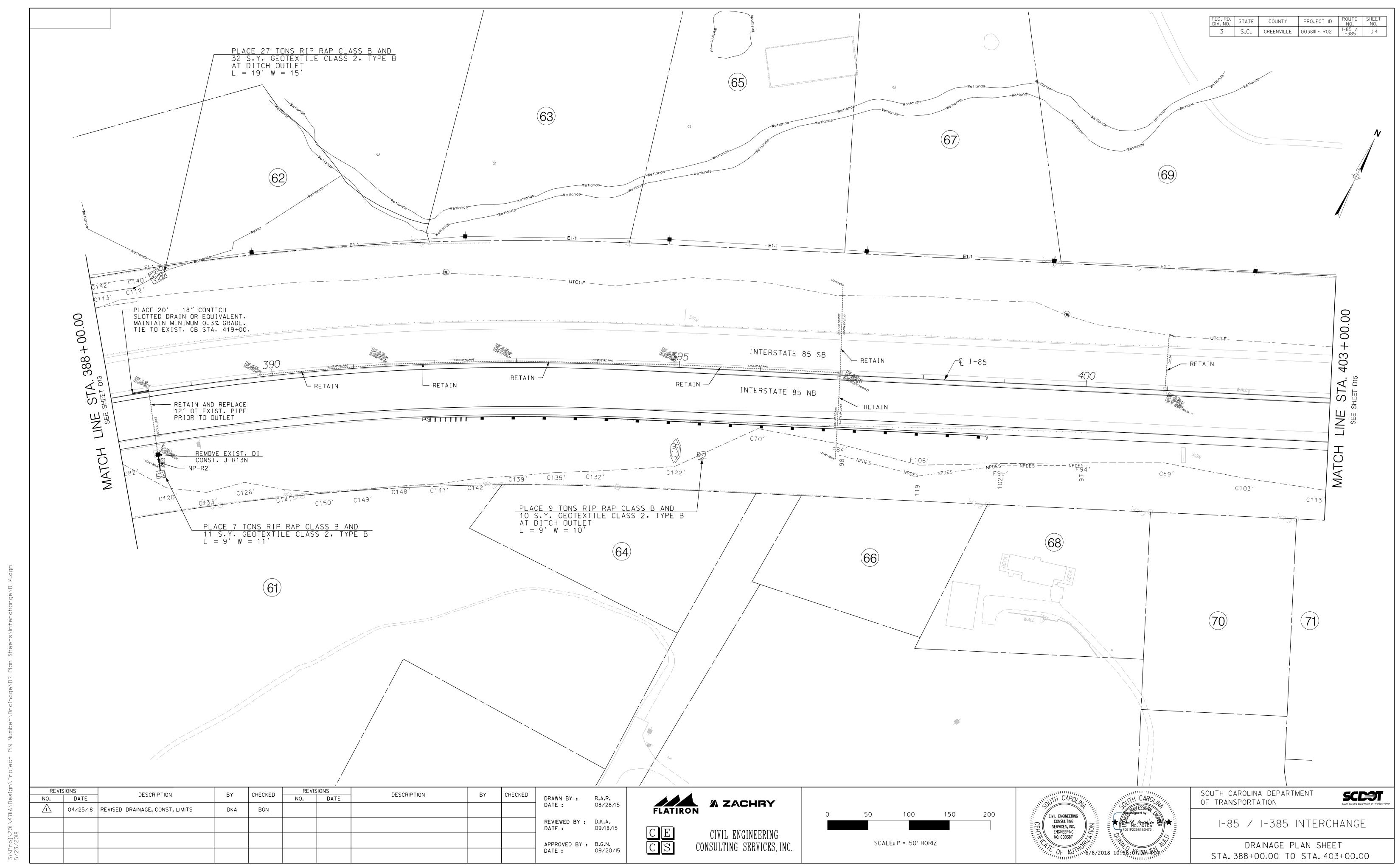

SCDT

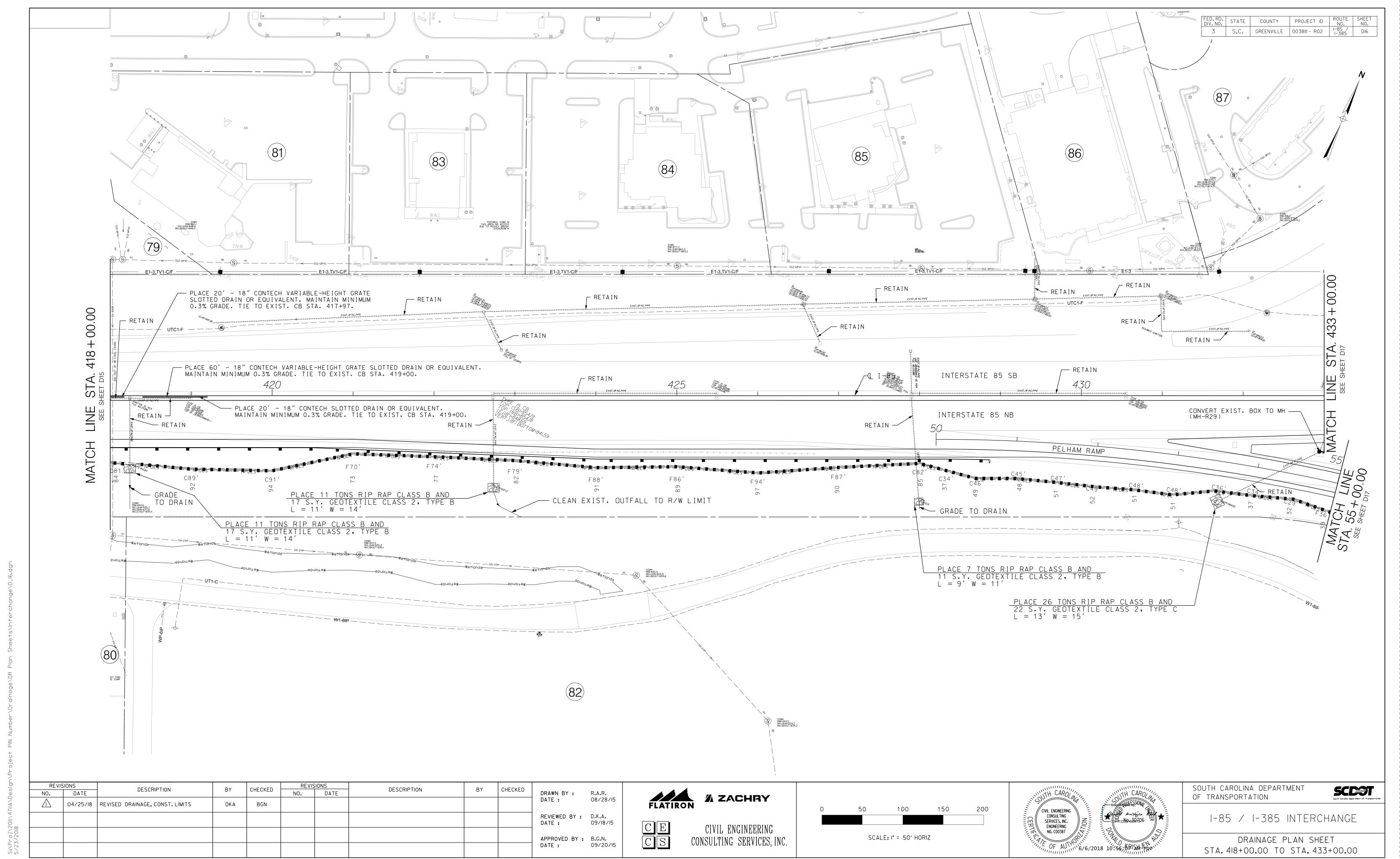





FED. RD. STATE COUNTY PROJECT ID 3 S.C. GREENVILLE 0038III - R02 L000000 (79) 23.412 M.E.A. 6' CHAIN LINK +57.00 -418+ **/**-Q_ I −85 INTERSTATE 85 SB CUR PELHAM_RAMP-I) → PELHAM RAMP 16.00 PRESENT 150' R/W 23.412 M.E.A. SEE SHEET 20 FOR GUARDRAIL NOTE PRESENT 150' R/W 4/S 23.412 M.E.A. TIE EQUALITY: POT STA.428+20.48 I-85 = PC STA.50.00.00 PELHAM RAMP 54.00' RIGHT (BEGIN PELHAM RAMP) PRESENT TRANS. R/W 23.986 M.E.A. 80 CONTRACTOR TO REPLACE EXISTING GUARDRAIL (WITH ASSOCIATED PAVING UNDER GUARDRAIL) WITHIN THE PROJECT LIMITS. LIGHT DUTY PAVING CONSTRUCT CONCRETE BARRIER
AT SIGN SUPPORT
SEE STANDARD DRAWINGS 805-801-00
& 805-804-00 PAVED SHOULDER PAVEMENT REMOVAL ALIGNMENT CONTROL CAN BE FOUND ON REFERENCE DATA SHEETS 5B TO 5K REVISIONS SOUTH CAROLINA DEPARTMENT SCE DESCRIPTION BY CHECKED DESCRIPTION CHECKED CAROLLING ESSY MAN Knade SUTH CAROLIN DRAWN BY: A.W.F DATE: 6/10/15 NO. DATE NO. DATE FLATIRON OF TRANSPORTATION **%** ZACHRY REVISED STA. 386+60 TO 425+00 B.G.N. P.H.R. 5/3/18 CIVIL ENGINEERING CONSULTING SERVICES, INC. ENGINEERING NO. COO387 100 150 200 I-85 / I-385 INTERCHANGE REVIEWED BY : B.A.H. DATE : 09/04/15 CIVIL ENGINEERING SCALE: I" = 50' HORIZ APPROVED BY : B.G.N. CONSULTING SERVICES, INC. PLAN SHEET DATE: 09/20/15 STA. 418+00.00 TO STA. 433+00.00

DocuSign Envelope ID: BED5394D-C65C-43A7-AD8A-7C6342BF1B93

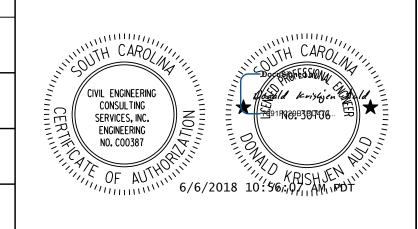


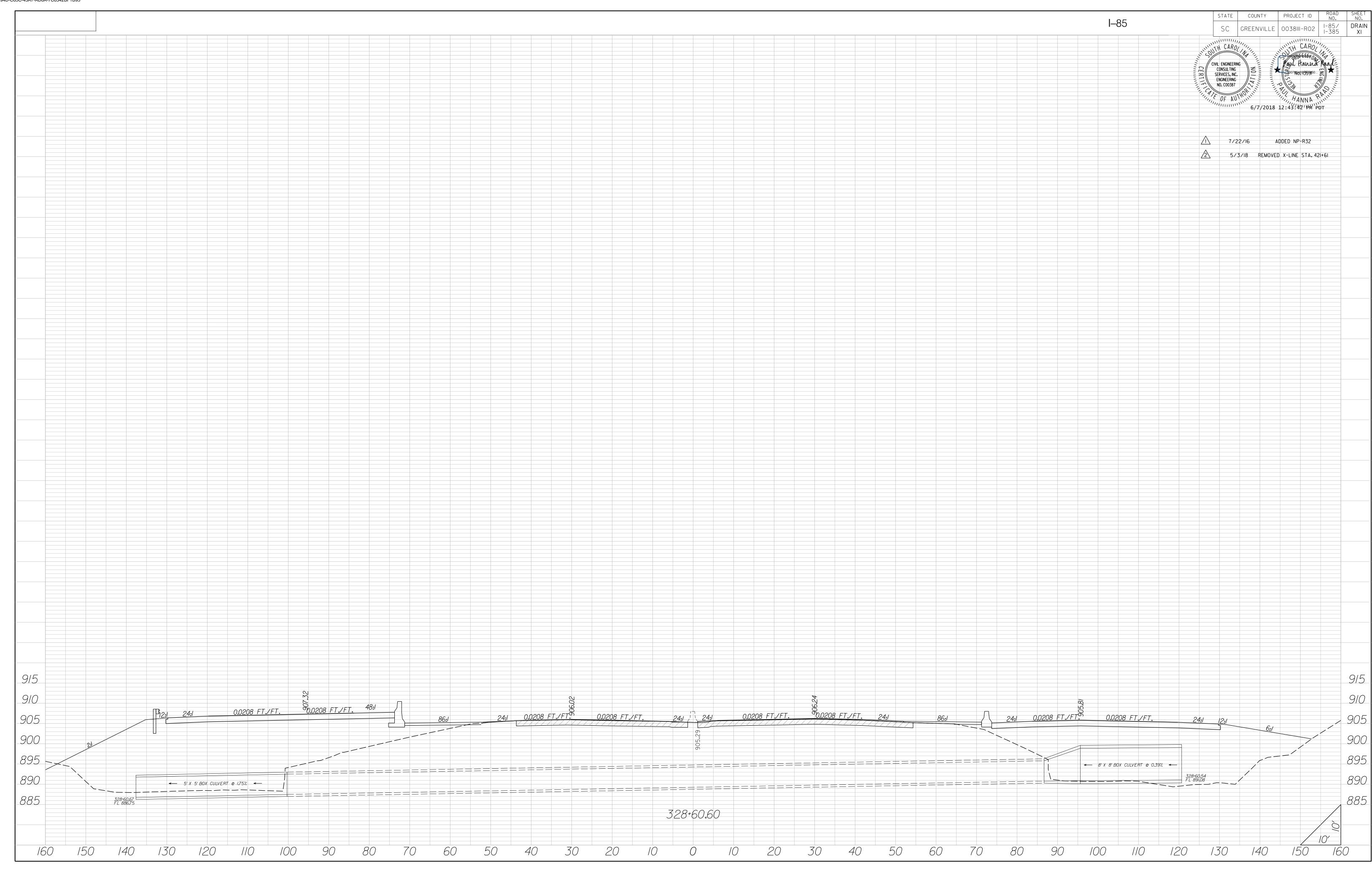


DRAINAGE PLAN SHEET STA. 373+00.00 TO STA. 388+00.00

STORM SEWER DATA SHEET

FED. RD. STATE COUNTY PROJECT ID R


3 S.C. GREENVILLE 0038III - R02

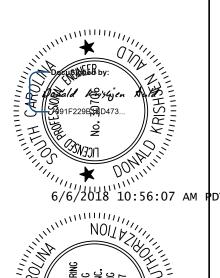

																-
	•	METRY				STREAM		I				NSTREAM		<u> </u>		4
	PIPE	1			NODE	1					NODE	T			ļ!	SPT "N"
ID	DIA. AND MATERIAL	NO. OF BARRELS	LENGTH (FT)	ID	DESCRIPTION	ROAD / ROUTE	STATION	OFFSET	PIPE INVERT (FT)	ID	DESCRIPTION	ROAD / ROUTE	STATION	OFFSET	PIPE INVERT (FT)	
NP-R10	18" SM. WALL PIPE	1	8	DN-R30	DUMMY JOINT	185	381+45.66	82	879.93	DN-R29	DUMMY JOINT	185	381+45.80	74	879.84	
NP-R12			12	DN-R28	DUMMY JOINT	185	381+46.00	-79	877.84	OP-R102	ОР	185	381+45.85		877.68	
NP-R15			16	DN-R31	DUMMY JOINT	185	385+95.86	-79	873.06	OP-R103	OP	185	385+95.83	-95	872.67	
NP-R2	18" SM. WALL PIPE	1	18	J-R13N	JB	185	388+45.95	78	869.38	OP-R100	OP	185	388+45.65	98	869.28	
NP-R29			27	CB-R29	DI TYPE 112	PELHAM_RAMP		-33	868.45	MH-R29	CONVERT EXIST. BOX TO MH	185	432+94.00	69	868.04	
																Ī
																↓
																<u> </u>
																<u> </u>
															 '	↓
															 '	
															ļ	
															ļ!	
															<u>'</u>	_
															 /	
																├ ──
																
																
																+
																+
															· · · · · · · · · · · · · · · · · · ·	+
															· · · · · · · · · · · · · · · · · · ·	+
																†
																1
																†
																1
																<u> </u>
																<u> </u>
															<u> </u>	
																
												-				
																<u> </u>

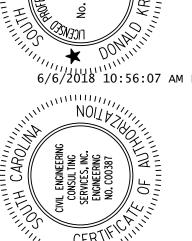
		METRY				STREAM						NSTREAM			T	I
	PIPE	T	I		NODE	T	Ī				NODE	T				SPT"
ID	DIA. AND MATERIAL	NO. OF BARRELS	LENGTH (FT)	ID	DESCRIPTION	ROAD / ROUTE	STATION	OFFSET	PIPE INVERT (FT)	ID	DESCRIPTION	ROAD / ROUTE	STATION	OFFSET	PIPE INVERT (FT)	
																\perp
																—
																4
		-														+
																+
																+
																+
																+
																1
																—
																+-
																+
																+
																+
																+
																+
																+
																\top
																\perp
																_
																+
																+
								<u> </u>								+
												<u> </u>				+
																+
								 				1				+
																+
																+
	i	1					•				Ī				1	

		OMETRY				STREAM						NSTREAM				
	PIPE		_		NODE		Г				NODE	<u>, </u>			<u> </u>	SPT "N
ID	DIA. AND MATERIAL	NO. OF BARRELS	LENGTH (FT)	ID	DESCRIPTION	ROAD / ROUTE	STATION	OFFSET	PIPE INVERT (FT)	ID	DESCRIPTION	ROAD / ROUTE	STATION	OFFSET	PIPE INVERT	
																↓
																<u> </u>
								-								-
																
															<u> </u>	
																-
																+
																1
															<u> </u>	
															<u> </u>	+
																+
																+
																1
								-							<u> </u>	+
								<u> </u>								+
																<u> </u>
															<u> </u>	₩
								 								+
								<u> </u>								+
																+

REVI	SIONS	DESCRIPTION	BY	CHECKED	REVIS	SIONS	DESCRIPTION	BY	CHECKED	
NO.	DATE		D I	CHECKED	NO.	DATE	- DESCRIPTION		CHECKED	
\triangle	04/20/17	NP-RI,NP-RII,NP-RI3,NP-RI4,NP-R23,NP-R24, NP-R25,NP-R3,NP-R32,NP-R33,NP-R35, NP-R36,NP-R37 AND ASSOCIATED STRUCTURES DELETED.	D.K.A.	B.G.N.						

EROSION CONTROL DATA SHEET


FED. RD. DIV. NO. STATE COUNTY PROJECT ID ROUTE NO. NO. 3 S.C. GREENVILLE 0038111 - R02 1-85 / EC8


				REC	CEIVIN	IG WAT	ΓERS						S	SOIL T	YPE	S				TE	MPOI	RARY	ERO	OSION C	ONTRO	L BLANKE	ET
ROAD/	OUTFALL DIT	ГСН	NAME OF	NAME OF U	ULTIMATE	ROAD /	OUTFALL DIT	(H I	NAME OF	NAME OF U	LTIMATE	ROAD /	STAT			PARTICLE	ZONE		ROAD	/		TION	SIDE	DEPTH OF	SLOPES	DITCH BOTTOM	MSY
ROUTE	STATION	SIDE	RECEIVING WATERS	RECEIVING	GWATERS	ROUTE	STATION S		ECEIVING WATERS	RECEIVING	WATERS	ROUTE	TO STAT			OARSE / NE)	ZONE		ROUTE	Ε		TO ATION	SIDE	1	x:1 FRONT BAC		WIST
I-85	385+05	LT	ROCKY CREEK		E RIVER							I-85	BEG.	413+22		INE	PIEDMONT										
I-85 I-85	386+53 387+61	LT RT	ROCKY CREEK ROCKY CREEK		E RIVER E RIVER							I-85 I-85	413+22 426+17	426+17 END		ARSE INE	PIEDMONT PIEDMONT										
I-85	389+05	LT	ROCKY CREEK		E RIVER							PEL. RA. *	BEG.	END		INE	PIEDMONT										
I-85	413+26	RT	ROCKY CREEK		E RIVER																						
I-85 I-85	418+24 423+25	RT RT	ROCKY CREEK ROCKY CREEK		E RIVER E RIVER																			CUTO 5	00		
I-85	427+99	RT	ROCKY CREEK		E RIVER																	FOR T	SEE FMF	SHTS. E ORARY OL BLAN	C9 FROSION		
PEL. RA.* PEL. RA.*	53+31 54+67	RT RT	ROCKY CREEK ROCKY CREEK		E RIVER E RIVER																	CC	NTF	OL BLAN	KET		
122, 141.		+	*PELHAM_RAMP									*PELHAM	RAMP														
	NOTE BASIN IN VERTICAL "DEPTH	ICISEMENT L SIDE SI OF BASIN	TO BE CONSTRUCT LOPES TO DEPTH SH	ED WITH HOWN IN		SE	EDIMENT	 Г D AM	[
ROAD/			DRAINED	LENGTH	WIDTH	DEPTH	SIDE SI OPE		SPILLWAY	TOTAL	SEDIMENT	RUNOFF	OUTFA	LL OUT	FALL (OUTFALL											
ROAD / ROUTE	NO STATION	SIDE	OR NOT DRAINED	OF	OF DA SINI	OF DASINI	OF	WIDTH	DEPTH	HEIGHT TO	STORAGE			I		CHANNEL										TOTALS	
I-85	RC1 381+40	RT	NOT DRAINED UNDRAINED	BASIN 118	BASIN 25	BASIN 1	BASIN 6:1/2:1	2	1.9	SPILLWAY 2.9	VOLUME 109	VOLUME 135	WIDT	n DE	PTH	LENGTH				CT.							
I-85	RC2 386+24	RT	UNDRAINED	112	40	2.5	6:1/2:1	10	2	4.5	414	199								St	EDIM	ENTT	JBE	ES IN DIT	ICHES		
I-85	RC3 395+00	RT	UNDRAINED	100	10	2	6:1/2:1	3	3.5	5.5	74	156					ROAD/	STAT T			VERA GE		NG	TOTAI		COMMEN	ITS
																	ROUTE	STA	_		LENGTH	(FT)		101711		COMMEN	
																	I-85	387+14	388+92	LT	20	150		60			
																	I-85 I-85	376+00 383+50		RT RT	10	150		60 20			
																	I-85	384+00	385+50	RT	10	150		20			
																	I-85 I-85	385+50 388+50	386+50 389+50	RT	10	100 75		20 30			
																	I-85	389+50		RT	10	150		30			
																	I-85 I-85	391+50		RT RT	10	100		50			
																	I-85	395+00 401+00		RT	10	150		70			
																	PELHAM	54+00	55+00	LT	10	150		20			
																	PELHAM PELHAM	61+00 55+00	61+25 61+25	RT	10	25 50		20			
				TUR	F REIN	FORCE	ED MATT	ING (7	rrm)																		
ROAD/	STAT TO		SIDE DEP	ГН OF MAT	SLO	PES	DITCH BOTTOM	TVDE	TYPE 1	TY	PE 2	TYPE	E3														
ROUTE	STAT		SIDE	(FT)	FRONT	BACK	WIDTH (FT)	ITE	(MSY)	(M	SY)	(MS)	Y)														
I-85	381+50		+00 RT	3	6	2	0	1	1.525		000	0.00															
I-85 I-85	415+00 423+00	418-	+00 RT +00 RT	5	1 1 5	0	0	3	0.000		000 300	0.09															
PELHAM	55+00	61+		2	6	2	0	1	1.155		000	0.00															
							TOT	TALS	2.681	0.	300	0.09	4									GRAND T	OTAL	630		TH CAROLANIA	TH CAROLANIA
																					\triangle	04/25/18 AC	JUSTED REFLE	EROSION CONTROL CT REVISED CONST	ITEMS . LIMITS	CIVIL ENGNEERING CONSULTING SERVICES, INC.	Designation of the property o

EROSION CONTROL DATA SHEET

FED. RD. DIV. NO. STATE COUNTY PROJECT ID ROUTE SHEET NO. NO. 3 S.C. GREENVILLE 0038III - R02 I-85 / I-385 EC9

									TEM	/IPORAI	RY ER	OSION CONTRO	DL BLA	NKET								
DO 4 D /	STATION		DEPTH OF			DITCH		DO AN	D /	STATION		DEPTH OF		DITCH		no.	STATIO	N	DEPTH OF		DITCH	
ROAD / ROUTE	TO	SIDE	BLANKET	SLC	OPES	BOTTOM WIDTH	MSY	ROA) ROU		ТО		SIDE BLANKET	SLOPES	BOTTOM WIDTH M	SY	ROA ROU	TO TO		SIDE BLANKET	SLO	PES BOTTOM WIDTH	MSY
	STATION		(FT)			(FT)				STATION		(FT)		(FT)			STATIO	N	(FT)		(FT)	
				EDO) /E	x:1							TID O	x:1							ED CO IT	x:1	
I-85	375+00 375+50	LT	10	FRONT 4	BACK 0	0	0.229					FRO	T BACK							FRONT	BACK	
I-85	375+50 375+25	LT	10	2	0	0	0.062															
I-85	377+00 379+50	LT	6	2	0	0	0.373															
I-85	381+50 386+00	LT	8	2	0	0	0.894															
I-85 I-85	386+50 387+00 387+50 388+50	LT LT	6	2	2	10	0.174															
I-85	376+50 376+50	RT	12	0	2	0	0.000															
I-85	377+00 380+50	RT	20	0	2	0	1.739															
I-85 I-85	381+00 381+50 381+50 382+00	RT RT	15	0	2	0	0.186															
I-85	384+50 385+50	RT	6	0	2	0	0.149															
I-85	388+50 389+00	RT	8	6	2	0	0.370															
I-85	389+00 389+50	RT	18	0	2	0	0.224															
I-85 I-85	389+50 390+00 390+00 391+50	RT RT	21 31	0	2 2	0	0.261 1.155			+												
I-85	391+50 392+50	RT	25	0	2	0	0.621															
I-85	392+50 394+00	RT	20	0	2	0	0.745															
I-85	393+50 396+00 394+00 396+00	RT RT	8	6	0	0	1.352 0.398															
I-85	397+00 398+00	RT	8	2	0	0	0.199															
I-85	398+00 401+00	RT	8	4	0	0	1.099															
I-85	402+00 403+00	RT	10	0	2	0	0.248															
I-85	403+00 405+00 405+00 408+00	RT RT	20 25	0	2	0	0.994 1.863															
I-85	408+00 409+00	RT	10	0	2	0	0.248															
I-85	424+00 426+00	RT	5	1.5	0	0	0.200															
I-85	426+00 427+50	RT	8	4	0	0	0.550															
										+ +												
										+												
										+												

		BRIDGES T	O BE CONSTRUCTED	
BRIDGE NO.	ROAD NO.	LENGTH	STA. TO STA.	LOCATION
1/2A	I-385 SB	201.85′	374+34.76 TO 376+36.6I	GARLINGTON RD. & GE RAILROAD OVERPASS
28	1-385 NB	201.50′	374+96.79 TO 376+98.29	GARLINGTON RD. & GE RAILROAD OVERPASS
3	I-385 NB CD	201.50′	376+37.60 TO 378+39.10	GARLINGTON RD. & GE RAILROAD OVERPASS
4	RAMP 8	148.17′	57+85.53 TO 59+33.70	1-385 NB CD OVERPASS
5	RAMP IA	1522.83′	72+79.42 TO 88+02.25	I-385 & I-85 OVERPASS
6	RAMP 4B	1962.83′	390+18.50 TO 409+81.33	I-385 & I-85 OVERPASS
7	RAMP 2B	475.00′	34+16.95 TO 38+91.95	I-85 OVERPASS
8	RAMP 3A	254.85′	297+8I.45 TO 300+36.30	I-85 OVERPASS
9	RAMP 2A	368.84′	7I+70.8ITO 75+39.65	I-85 OVERPASS
10	RAMP IB	220.05′	69+II.35 TO 7I+3I.40	RAMP 4B OVERPASS
12	1-385	497.17′	395+34.84 TO 400+32.0I	I-85 OVERPASS

BRIDGE PLANS BOUND UNDER SEPARATE COVER

ENVIRONMENTA	L PERMIT INFO	ORMATION	
USACE PERMIT	_X_YES	NO	
NEPA DOCUMENT	X YES	NO	
401 CERTIFICATION	_X_YES	NO	
OCRM CAP	YES	_X_NO	
NAVIGABLE WATERSSC	USCG	USACE	_X_N/A

3 DAYS BEFORE DIGGING IN SOUTH CAROLINA

CALL 811

SOUTH CAROLINA 811 (SC811) WWW.SC811.COM ALL UTILITIES MAY NOT BE A MEMBER OF SC811

> RAILROAD INVOLVEMENT? YES/ NO

	TRAFFIC DATA	
	I–85	I–385
2015 ADT	118,200	106,500
2035 ADT	174,700	171,400
TRUCKS	18 %	18 %

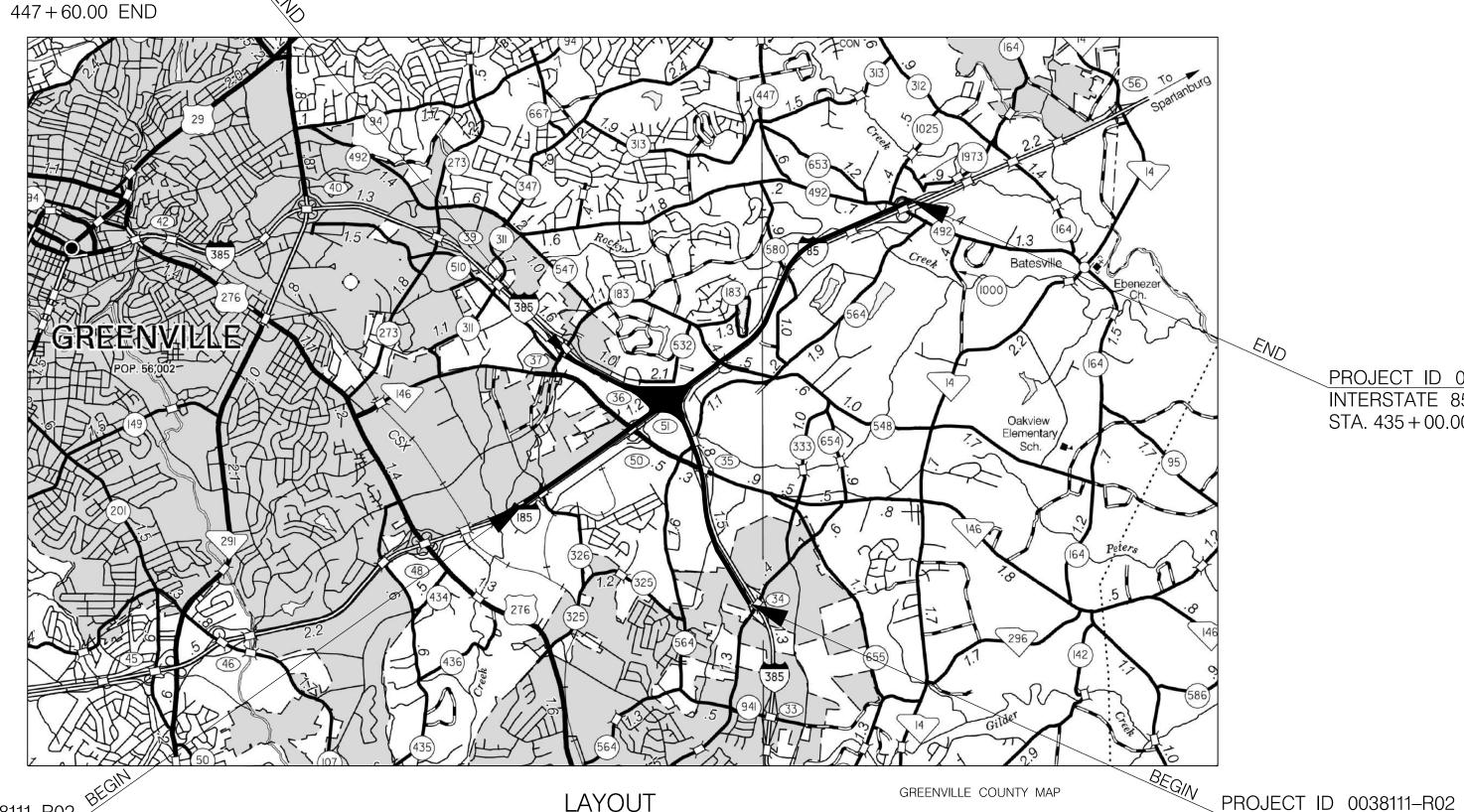
REVIS	SIONS	DESCRIPTION	BY	CHECKED
NO.	DATE	DESCRIPTION	БТ	CHECKED
\triangle	1/27/16	SHEET TOTAL REVISED	D.R.R.	B.G.N.
2	5/02/16	SHEET TOTAL REVISED	D.R.R.	B.G.N.
3	5/12/16	SHEET TOTAL REVISED	D.R.R.	B.G.N.
4	6/17/16	SHEET TOTAL REVISED	D.R.R.	R.L.K
<u></u> \$	7/8/16	SHEET TOTAL REVISED	D.R.R.	R.L.K
<u></u>	8/9/16	SHEET TOTAL REVISED	D.R.R.	R.L.K
À	8/18/16	SHEET TOTAL REVISED	D.R.R.	R.L.K

INTERSTATE 385

RELEASE FOR

CONSTRUCTION PLANS

PROPOSED PLANS FOR


GREENVILLE COUNTY

PROJECT ID 0038111 - R02

INTERSTATE 85 / 385 INTERCHANGE

FROM: 0.20 MILES SOUTH OF S-326 PROJECT ID 0038111-R02

TO: ROAD S-492

LAYOUT PROJECT ID 0038111-R02 (NOT TO SCALE) INTERSTATE 85 I-385 CD's 203+00.00 BEGIN

NET LENGTH OF ROADWAY	4.394	MILES	2.551	MILES	9.035	MILES	2.867	MILES	18.757	MILES
NET LENGTH OF BRIDGES	-	MILES	0.171	MILES	0.938	MILES	0.038	MILES	1.147	MILES
NET LENGTH OF PROJECT	4.394	MILES	2.722	MILES	9.973	MILES	2.905	MILES	19.993	MILES
LENGTH OF EXCEPTIONS	-	MILES	-	MILES	-	MILES	-	MILES	-	MILES
GROSS LENGTH OF PROJECT	4.394	MILES	2.722	MILES	9.973	MILES	2.905	MILES	19.993	MILES

EQUALITIES IN STATIONING

NONE

NOTE: EXCEPT AS MAY OTHERWISE BE SPECIFIED ON THE PLANS OR IN THE SPECIAL PROVISIONS, ALL MATERIALS AND WORKMANSHIP ON THIS PROJECT SHALL CONFORM TO THE SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS FOR HIGHWAY CONSTRUCTION (2007 EDITION) AND THE STANDARD DRAWINGS FOR ROAD CONSTRUCTION IN EFFECT AT THE TIME OF LETTING.

8	9/12/16	BRIDGE LENGTHS I/2A, 2B, 3. SHT. TTL RVSD	D.R.R.	12	1/12/17	SHEET TOTAL REVISED
<u></u>	9/28/16	SHEET TOTAL REVISED	B.G.N.	13	2/2/17	SHEET TOTAL REVISED
\triangle	10/21/16	SHEET TOTAL REVISED	B.G.N.	14	3/16/17	SHEET TOTAL REVISED
\bigwedge	10/28/16	SHEET TOTAL REVISED	B.G.N.	15	12/18/17	SHEET TOTAL REVISED

PROJECT ID 0038111-R02

STA. 435 + 00.00 END

INTERSTATE 85

Disturbed Area = 160.5 Acre(s) Permitted Area = 349.7 Acre(s)

CONTRACT ID 5384210

Hydraulic Design Reference for these plans in the:

2009

Edition of SCDOT'S "Requirements for Hydraulic Design Studies"

Design Reference for these plans is the:

2001

AASHTO "A Policy on Geometric Design of Highways and Streets"

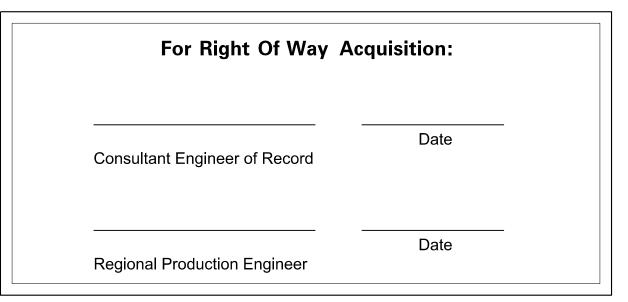
UNLESS OTHERWISE NOTED ON TYPICAL SECTION

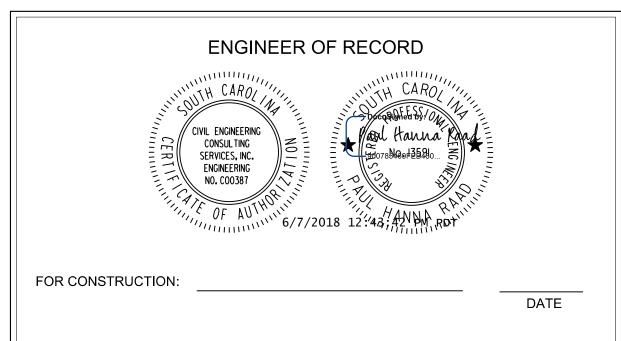
NPDES PERMIT INFORMATION

Approximate Location of Roadway is Begin 34° 50' 20' N Latitude 82° 17' 26' W End

> 34° 50' 02' N 82° 17' 27' W

Hydraulic and NPDES Design

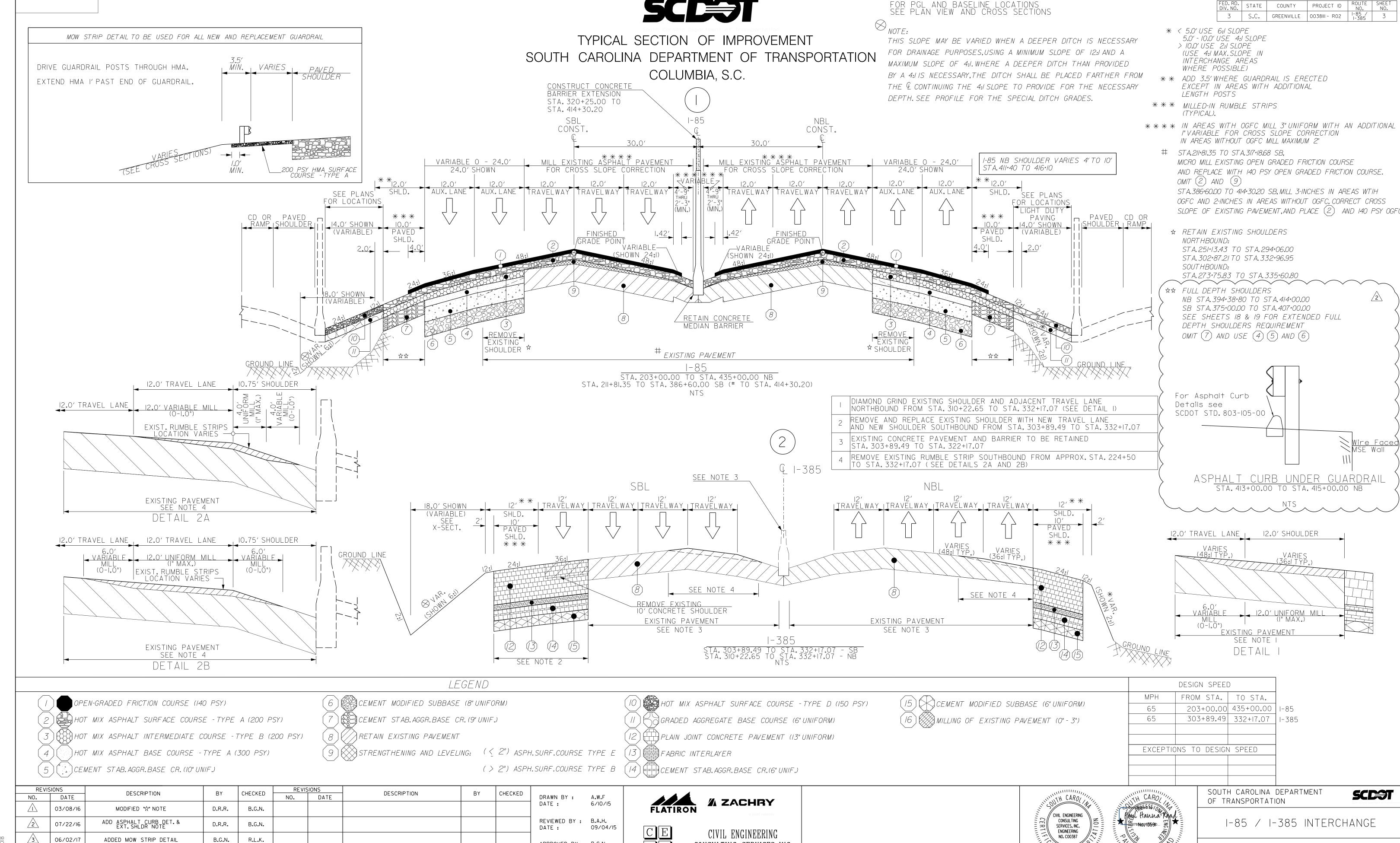

CECS, Inc.


Designs may be obtained from the SCDOT Regional Production Group

provided by:

SCDOT REVIEW	RIGHT-C	OF-WAY DATE	CONSTRI	JCTION DATE
PRECONSTRUCTION SUPPORT - ROAD				
PRECONSTRUCTION SUPPORT - STRUCTURES				
RPG - DESIGN MANAGER				
RPG - PROGRAM MANAGER				

THE INITIALS ABOVE DO NOT RELIEVE THE ENGINEER OF RECORD OF THE RESPONSIBILITY TO DESIGN THIS PROJECT IN ACCORDANCE WITH ALL APPLICABLE CRITERIA.



CONSULTING ENGINEERING FIRM **%** ZACHRY CIVIL ENGINEERING CONSULTING SERVICES, INC 2000 PARK STREET SUITE 201 COLUMBIA, S.C. 29201

B.G.N.

INTERSTATE 385

303 + 89.49 BEGIN

CONSULTING SERVICES, INC.

APPROVED BY : B.G.N.

DATE:

09/20/15

ADDED MOW STRIP DETAIL

REVISED I-85 SB END STA., ADDED I-85 NB REDUCED SHOULDER NOTE

06/02/17

5/3/18

R.L.K.

P.H.R.

TYPICAL SECTION

GEOTECHNICAL NOTES

PROJECT ID 3 S.C. GREENVILLE 0038III - R02

MAIN INTERCHANGE

The following notes apply to borrow materials:

 Provide borrow materials meeting the following minimum requirements:
 A sandy material (35% or less passing 0.075 mm) with a minimum total soil unit weight, γ_∞ of 110 pcf, with a maximum dry density exceeding 100 pcf.
• Minimum friction angle, φ, of 30°and cohesion, c, of 50 psf for embankment

No. 57 Stone backfill for Mechanically Stabilized Earth Walls

Walls 32 and 36 will require an embankment fill with a minimum friction angle, φ, of 32° and cohesion, c, of 50 psf. This requirement is between alignment Ramp 4. Stations 50+50 and 52+50.

In addition, determine the moisture-density relationship and classification of the material. Test and submit the classification, moisture-density relationship, and soil strength parameters of the material to the Engineer for acceptance. An AASHTO certified laboratory is required to perform the testing. Contact the RPG Geotechnical Engineer for a list of locally available AASHTO certified laboratories. The Department may perform independent testing to assure quality.

Determine the friction angle and cohesion using either direct shear testing or consolidated-undrained triaxial shear testing with pore pressure measurements. Direct Shear testing shall only be performed on soils with a fines content of less than 25 percent. Classification testing includes grain-size distribution with wash #200 sieve, moisture plasticity testing and natural moisture content. Use the Standard Proctor test to determine the moisture-density relationship. Remold all samples used in shear etrangth testing to 05 percent of the Standard Proctor. samples used in shear strength testing to 95 percent of the Standard Proctor density. Conduct shear strength testing at the initial selection of the borrow pit, any subsequent changes in borrow pits, and for every 10,000 cy of materials placed. Perform classification testing for every 50,000 cy of materials placed, including the material used for the shear strength testing. Additional shear testing may be required if, in the opinion of the RCE, the materials being placed are different from those originally tested.

If these minimum criteria cannot be met, provide the soil parameters for the intended borrow excavation material for the project site to the Engineer for review and acceptance. After acceptable borrow material is obtained, compact the fill to the required finish grade line using the compactive effort indicated in the Standard Specifications for Highway Construction, Section 205 (Embankment Construction).

The following notes apply to muck excavation:

Any areas identified on the plans and any additional areas that are discovered to deflect or settle may require corrective action as directed by the RCE. This may include undercutting, placing No. 57 stone aggregate that is separated from other borrow materials by a geotextile for separation of sub-grade and sub-base, and/or additional compactive effort to the approval of the RCE.

In areas that require mucking or undercutting, borrow material soil may be placed as a bridge lift as long as the grade on which the material is being placed is at least 2 feet above ground water level. In the event that groundwater does not allow backfilling with a borrow material soil, use a No. 57 stone as the bridge lift material. Borrow material bridge lifts may not exceed a 2-foot thickness. The depth at which mucking or undercutting is required is dependent upon encountering a suitable bearing material within the excavation or if a predetermined elevation or depth is required. In most cases, do not undercut more than 3 to 5 feet. The RCE will determine the final mucking or undercutting thickness, unless otherwise specified in the project plans and/or specifications. If a suitable bearing soil is not encountered within this depth range, place a P1 biaxial geogrid with an aperture size of less than or equal to 1 inch and in accordance with the project special previsions beneath a 2-foot thick bridge lift of No. 57 stone. If additional compacted borrow material soil is needed to reach grade, place a geotextile for separation of sub-grade and sub-base between the No. 57 stone and the overlying compacted soil. A bridge lift consisting of borrow material soil may not be placed within 3 feet of the base of the pavement section. Place only compacted borrow material soil or No. 57 stone within this zone. Reference the Standard Specifications for Highway Construction, Earthwork Section, Division 200.

The following notes apply for settlement and displacement monitoring:

The contractor shall establish a monitoring program consisting of settlement instruments. The settlement monitoring program must include establishing settlement monitoring instruments on the subgrade soils prior to fill placement, and at design pavement subgrade elevation. Settlement monitoring instruments are required at a spacing of every 100 feet along MSE Walls and every 500 feet along embankments with new fill thicknesses exceeding 20 feet. Instruments shall be established at the centerline of road and edge of pavement. Settlement monitoring shall continue until three consecutive measurements demonstrate the rate of settlement is less than 0.1 inches per year. No more than one measurement shall be obtained on a single day.

A minimum of 2 measurements shall be obtained on monuments prior to fill placement, and instruments shall be measured weekly during fill placement. Instrumentation measurements shall be provided to the Geotechnical Engineer within 24 hours of measurements for interpretation. Interpreted results shall be provided to the RCE.

The following notes apply to slope construction:

Where the new fill meets the existing slope, the existing slope shall be benched to limit the potential for a preferential failure surface and to allow compaction at the interface. Benches shall have a minimum horizontal length of 8 feet and a vertical rise of no more than 3 feet. Fill slopes of 2H:1V or steeper shall be overbuilt (i.e. fill should temporarily extend beyond the final slope face) to allow compaction at the slope face. After compaction is complete, the slope may be regraded to the final inclination.

Should seeps or thick lenses of highly plastic soils be observed in the planned fill and cut slopes that are steeper than 2H:1V, ECS must be contacted to determine if the steeper slopes may be constructed as planned or if slope flattening or reinforcing is required. Similarly, if soft or wet ground conditions are observed at the base of planned fill embankments, the QA representative must determine the limits of undercutting required or required in-situ treatment.

I-85 STA. 375+00 TO PELHAM RAMP

The following notes apply to borrow materials:

Provide borrow materials meeting the following minimum requirements:

A sandy material (35% or less passing 0.075 mm) with a minimum total soil unit weight, γ, of 110 pcf, with a maximum dry density exceeding 100 pcf. • Minimum friction angle, φ , of 30° and cohesion, c, of 50 psf for embankment fill, alternatively embankment fill may consist of a minimum friction angle (φ) of 34° with zero cohesion.

No. 57 Stone backfill for Mechanically Stabilized Earth Walls

In addition, determine the moisture-density relationship and classification of the material. Test and submit the classification, moisture-density relationship, and soil strength parameters of the material to the Engineer for acceptance. An AASHTO certified laboratory is required to perform the testing. Contact the RPG Geotechnical Engineer for a list of locally available AASHTO certified laboratories. The Department may perform independent testing to assure quality.

Determine the friction angle and cohesion using either direct shear testing or consolidated-undrained triaxial shear testing with pore pressure measurements. Direct Shear testing shall only be performed on soils with a fines content of less than 25 percent. Classification testing includes grain-size distribution with wash #200 sieve, moisture plasticity testing and natural moisture content. Use the Standard Proctor test to determine the moisture-density relationship. Remold all samples used in shear strength testing to 95 percent of the Standard Proctor density. Conduct shear strength testing at the initial selection of the borrow pit, any subsequent changes in borrow pits, and for every 10,000 cy of materials placed. Perform classification testing for every 50,000 cy of materials placed, including the material used for the shear strength testing. Additional shear testing may be required if, in the opinion of the RCE, the materials being placed are different from those originally tested.

If these minimum criteria cannot be met, provide the soil parameters for the intended borrow excavation material for the project site to the Engineer for review and acceptance. After acceptable borrow material is obtained, compact the fill to the required finish grade line using the compactive effort indicated in the Standard Specifications for Highway Construction, Section 205 (Embankment Construction).

The following notes apply to muck excavation:

Any areas identified on the plans and any additional areas that are discovered to deflect or settle may require corrective action as directed by the RCE. This may include undercutting; placing No. 57 stone aggregate that is separated from other borrow materials by a geotextile for separation of sub-grade and sub-base, and/or additional compactive effort to the approval of the RCE.

In areas that require mucking or undercutting, borrow material soil may be placed as a bridge lift as long as the grade on which the material is being placed is at least 2 feet above ground water level. In the event that groundwater does not allow backfilling with a borrow material soil, use a No. 57 stone as the bridge lift material. Borrow material bridge lifts may not exceed a 2-foot thickness. The depth at which mucking or undercutting is required is dependent upon encountering a suitable bearing material within the excavation or if a predetermined elevation or depth is required. In most cases, do not undercut more than 3 to 5 feet. The RCE will determine the final mucking or undercutting thickness, unless otherwise specified in the project plans and/or specifications. If a suitable bearing soil is not encountered within this depth range, place a P1 biaxial geogrid with an aperture size of less than or equal to 1 inch and in accordance with the project special provisions beneath a 2-foot thick bridge lift of No. 57 stone. If additional compacted borrow material soil is needed to reach grade, place a geotextile for separation of sub-grade and sub-base between the No. 57 stone and the overlying compacted soil. A bridge lift consisting of borrow material soil may not be placed within 3 feet of the base of the pavement section. Place only compacted borrow material soil or No. 57 stone within this zone. Reference the Standard Specifications for Highway Construction, Earthwork Section, Division 200.

The following notes apply for MSE Wall Subgrades:

Prior to construction of the leveling pad and MSE fill, the RCE shall verify that the retaining wall is founded on subgrade materials possessing the minimum allowable bearing capacity noted on wall plan and elevation sheets. If the RCE determines that the subgrade is unacceptable for placement of MSE fill, the contractor shall undercut the subgrade to the limits directed by the RCE. Unacceptable subgrade materials include, but are not limited to, all high plasticity clays and elastic silts (CH, MH), low plasticity clays and silts (CL, ML) with an unconfined compressive strength less than 2,000 psf, and deleterious debris. Replacement of undercut material will be with Backfill Material, meeting requirements outlined in the SCDOT Standard Specifications for Highway Construction.

The foundation area for the MSE walls might have scattered pockets of soft soils that might be present at the surface or just below the surface for the base of the MSE fill. These soft pockets are only expected to extend a few feet below the base of the MSE fill. The quality assurance representative shall proofroll the subgrade in this area and/or conduct dynamic cone tests at regular intervals to determine that the subgrade meets the requirements of the paragraph above.

There are several locations along the roadway alignment where proposed drainage structures are situated in front of (i.e. parallel) MSE walls, or where new and existing draining structures pass beneath the MSE walls. Where new pipes are parallel to the proposed wall, the pipe should be installed prior to the proposed wall or the wall design should account for the temporary reduction in passive resistance. Where pipes pass beneath walls, the pipes should be designed to account for the increased loading associated with the wall backfill. We recommend the ten of each pipe be cityeted a minimum of 1 feet below the bettern of retaining the top of each pipe be situated a minimum of 1 foot below the bottom of retaining.

The following notes apply for settlement and displacement monitoring:

The contractor shall establish a monitoring program consisting of settlement instruments. The settlement monitoring program must include establishing settlement monitoring instruments on the subgrade soils prior to fill placement, and at design pavement subgrade elevation. Settlement monitoring instruments are required at a spacing of every 100 feet along MSE Walls and every 500 feet along embankments with new fill thicknesses exceeding 20 feet. Instruments shall be established at the centerline of road and edge of pavement. Settlement monitoring shall continue until three consecutive measurements demonstrate the rate of settlement is less than 0.1 inches per year. No more than one measurement shall be obtained on a single day.

A minimum of 2 measurements shall be obtained on monuments prior to fill placement, and instruments shall be measured weekly during fill placement. Instrumentation measurements shall be provided to the Geotechnical Engineer within 24 hours of measurements for interpretation. Interpreted results shall be provided to the RCE.

The following notes apply to slope construction:

Where the new fill meets the existing slope, the existing slope shall be benched to limit the potential for a preferential failure surface and to allow compaction at the fill should temporarily extend beyond the final slope face) to allow compaction at the slope face. After compaction is complete, the slope may be regraded to the final inclination.

Should seeps or thick lenses of highly plastic soils be observed in the planned fill and cut slopes that are steeper than 2H:1V, ECS must be contacted to determine if the steeper slopes may be constructed as planned or if slope flattening or reinforcing is required. Similarly, if soft or wet ground conditions are observed at the base of planned fill embankments, the QA representative must determine the limits of undercutting required or required in-situ treatment.

The following Plan Notes apply to Mechanically Stabilized Earth walls:

Reinforced Backfill (Granular Fill or stone.)

Internal Friction Angle (deg) = 36 Total Unit Weight = 120 pcf Surcharge Dead Load for Pavement Overlay = 140 psf **Active Earth Pressure Coefficient = 0.26**

Retained Backfill

Internal Friction Angle (deg) = 30 Total Unit Weight = 117 pcf Active Earth Pressure Coefficient = 0.33

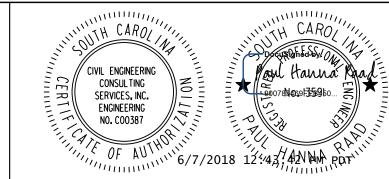
Wall 17 I-85 Station **Foundation Soils Total Internal Friction Angle (deg) = 26** Total Cohesion = 0 psf **Effective Internal Friction Angle (deg) = 26** Effective Cohesion = 0 psf

Wall Height Min. Breg Factored Bearing (Static) Factored Bearing (Seismic)

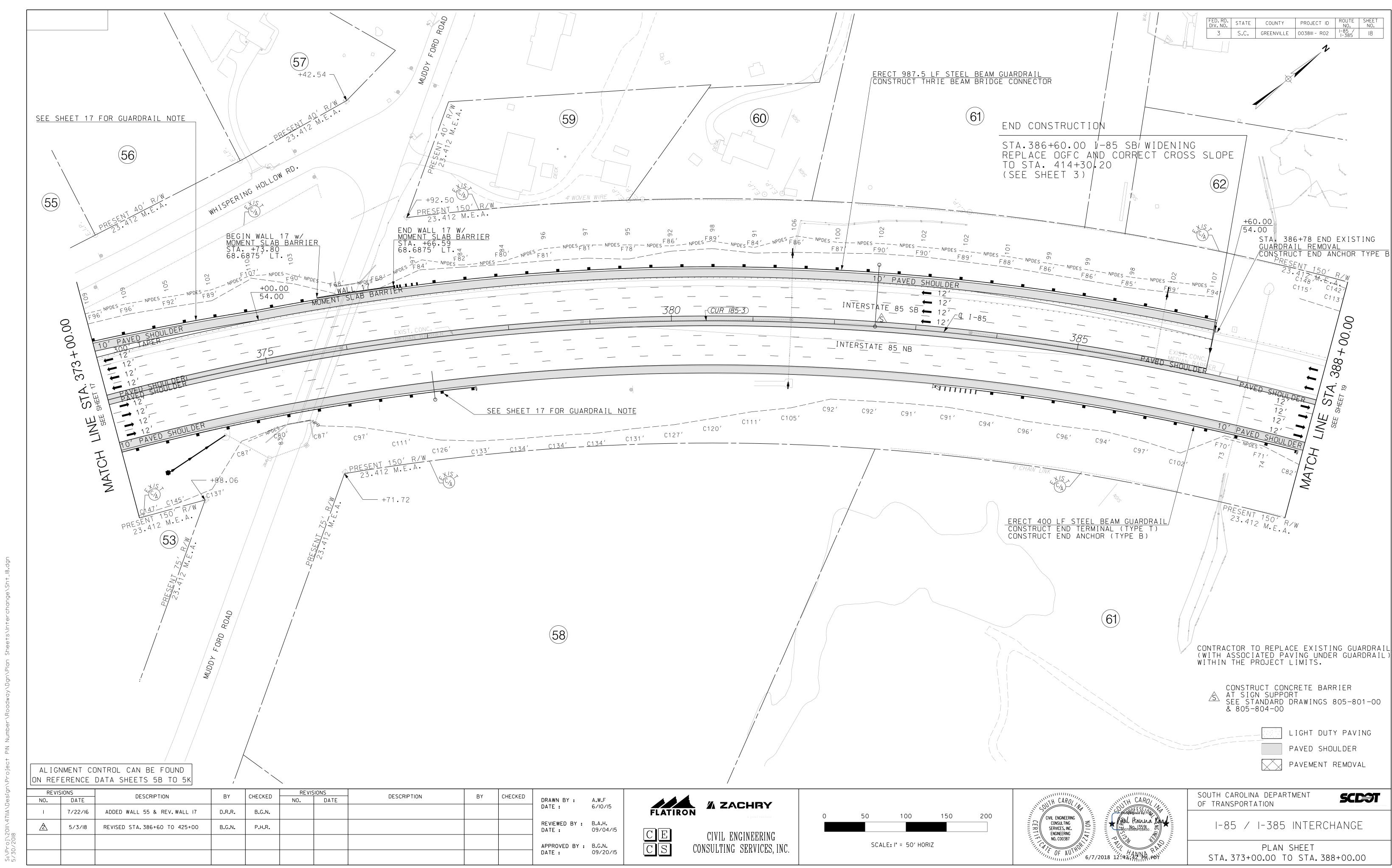
 $0 < H \le 7.5$ 14.5 ft 2,000 3,100

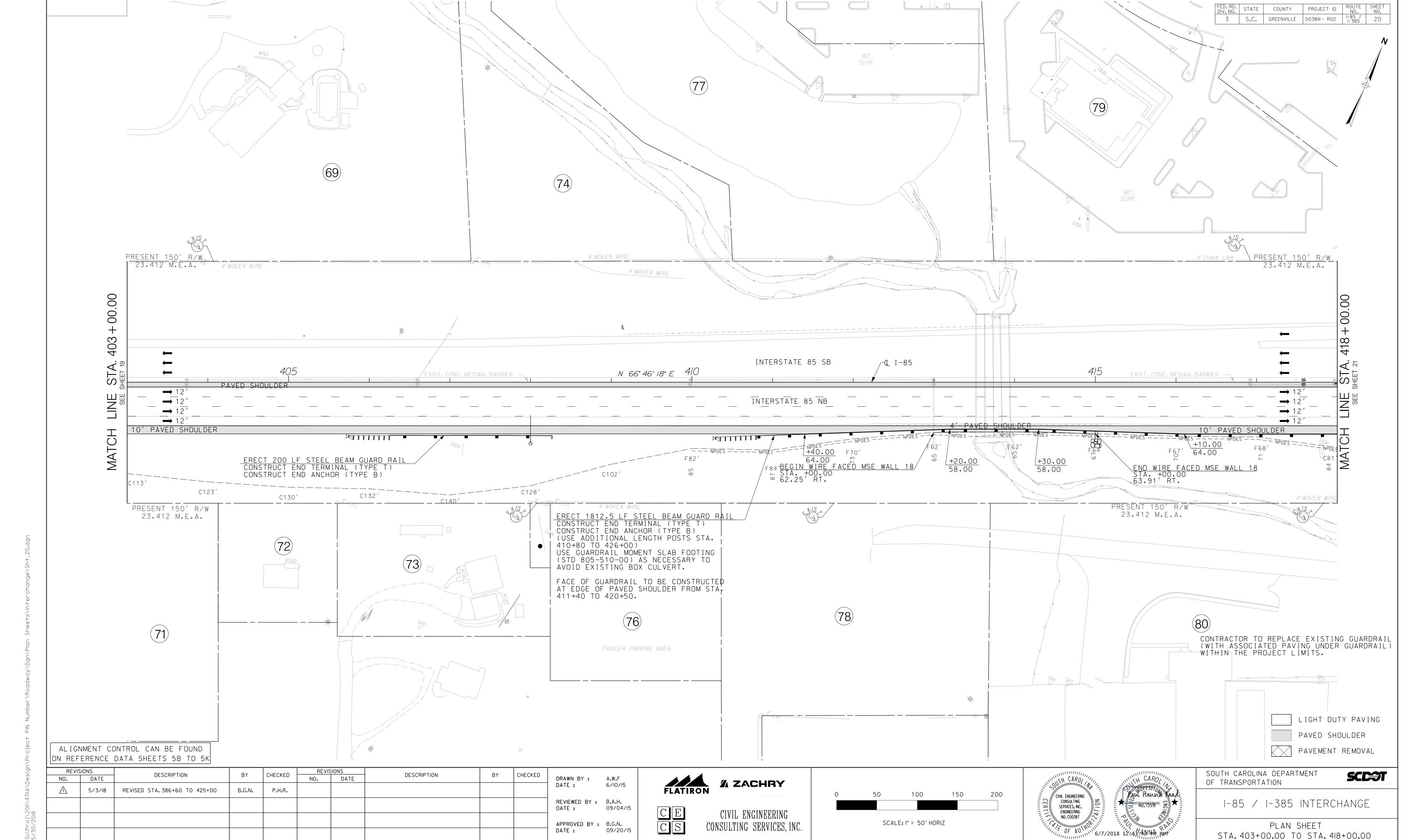
Wall 18 I-85 Station 413+00 to 415+00 Foundation Soils **Total Internal Friction Angle (deg) = 0** Total Cohesion = 1000 psf **Effective Internal Friction Angle (deg) = 26** Effective Cohesion = 100 psf

Wall Height Min. Breq Factored Bearing (Static) Factored Bearing (Seismic) 12.5 ft 3 < H ≤ 7 8,400


interface. Benches shall have a minimum horizontal length of 8 feet and a vertical rise of no more than 3 feet. Fill slopes of 2H:1V or steeper shall be overbuilt (i.e.

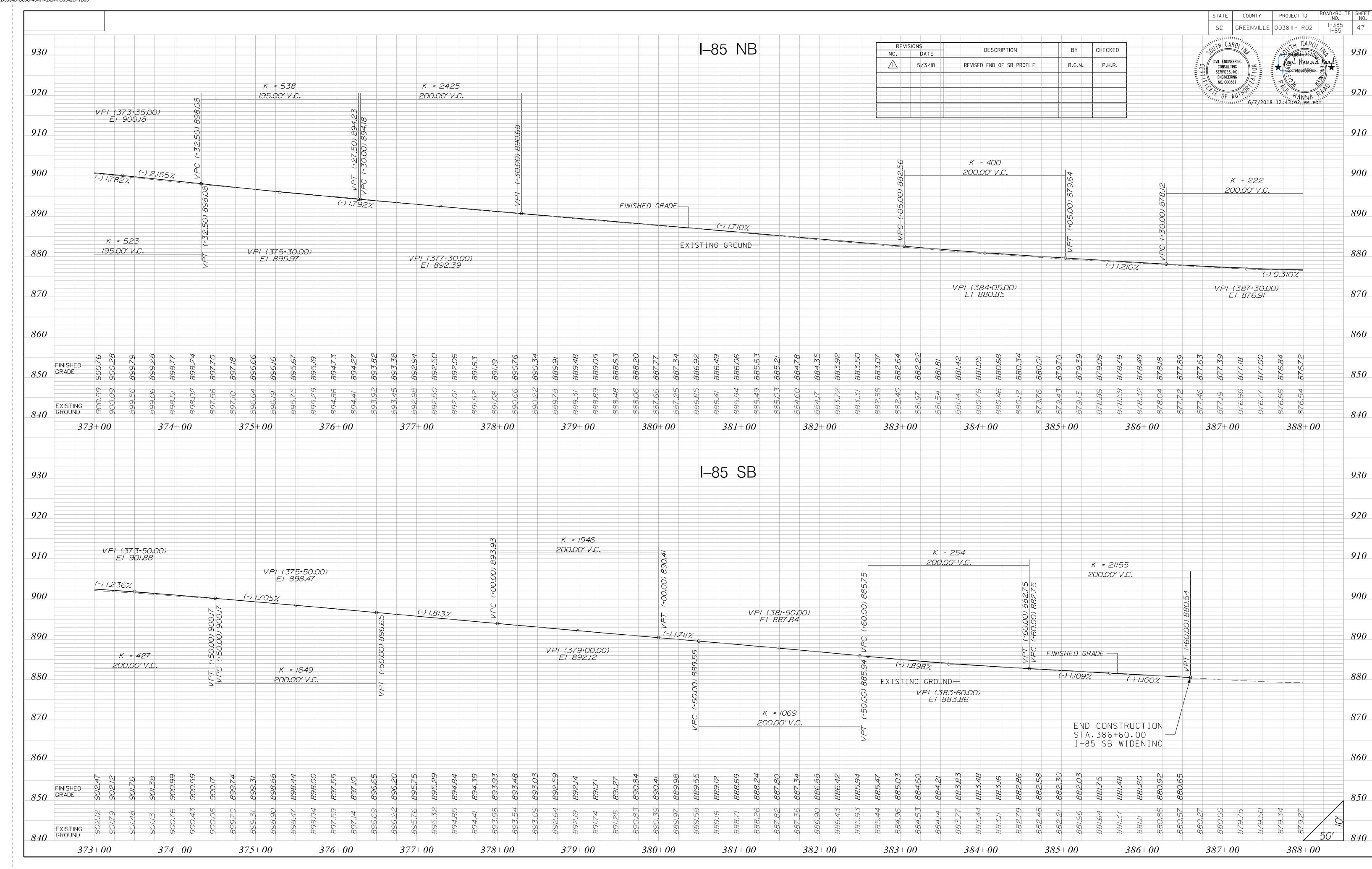
REVISIONS DESCRIPTION DESCRIPTION CHECKED CHECKED NO. DATE NO. DATE DRAWN BY : A.W.F DATE : 6/10/15 07/22/16 ADDED I-85 (ROCKY CREEK AREA GEOTECH. NOTES (ST. 375+00 - PELHAM) P.H.R. D.R.R. REVIEWED BY : B.A.H. 2 P.H.R. 5/3/18 REVISED WALL 18, REMOVED WALL 55 09/04/15 DATE : APPROVED BY : B.G.N. 09/20/15 DATE :

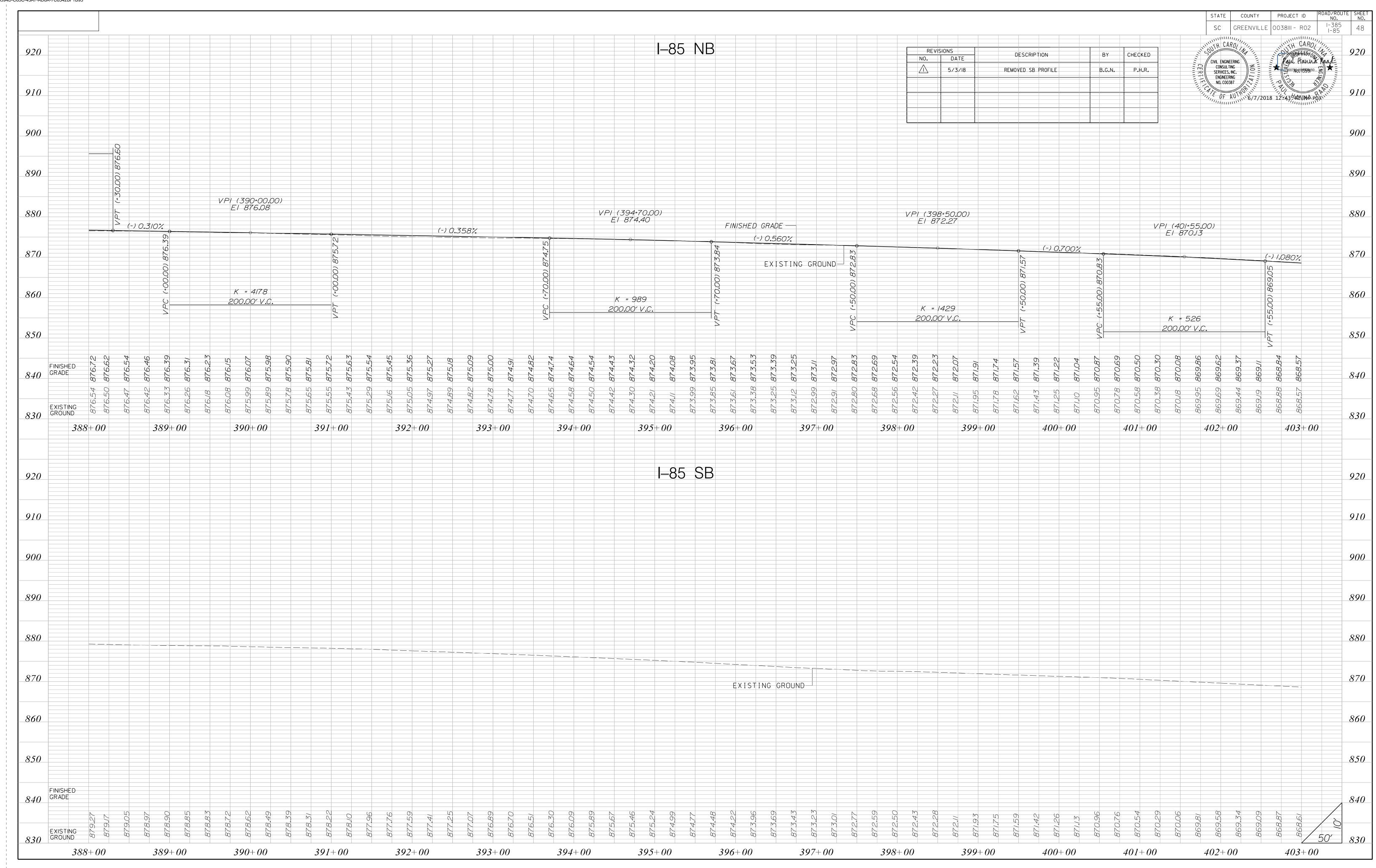


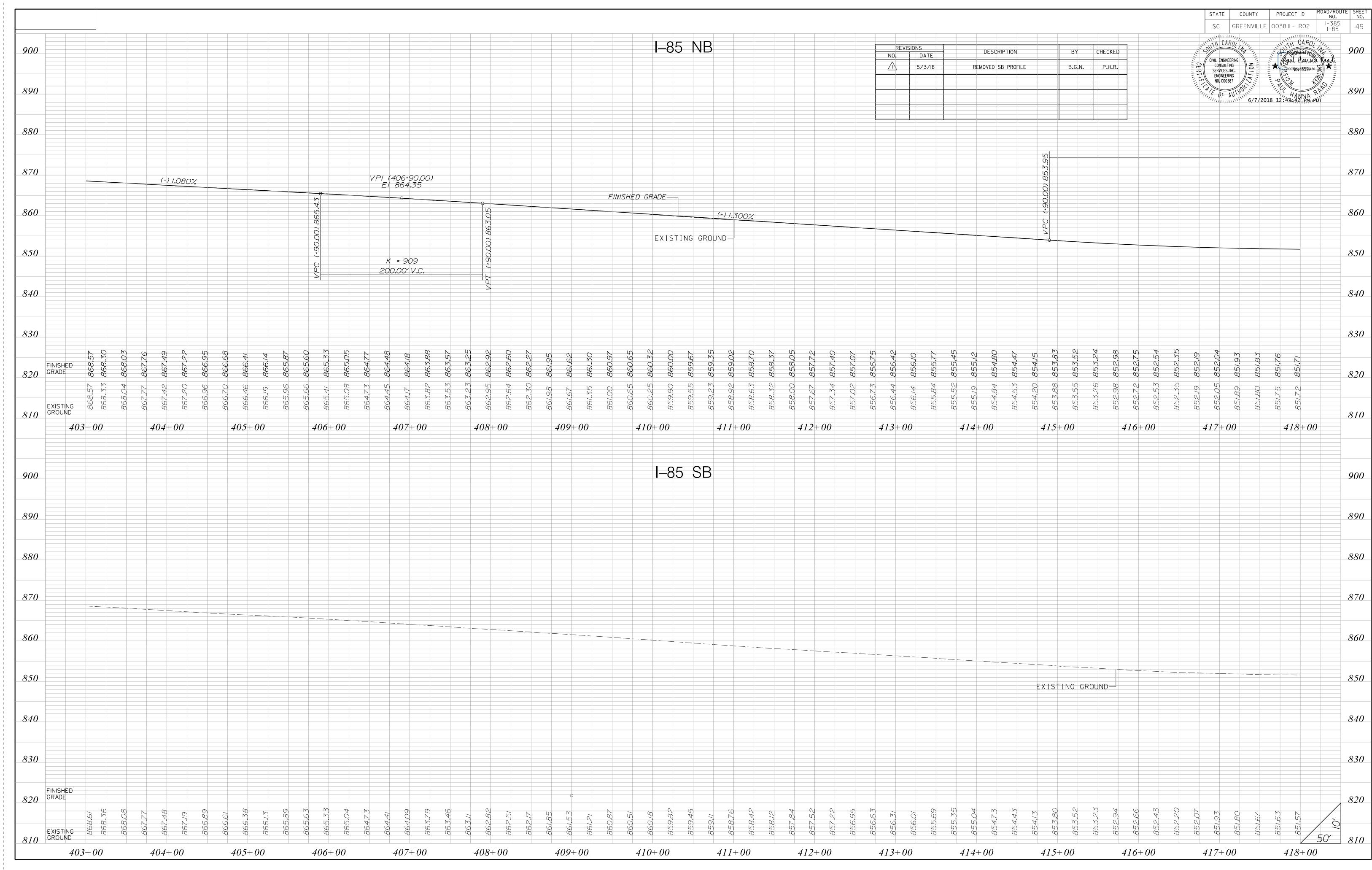

SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

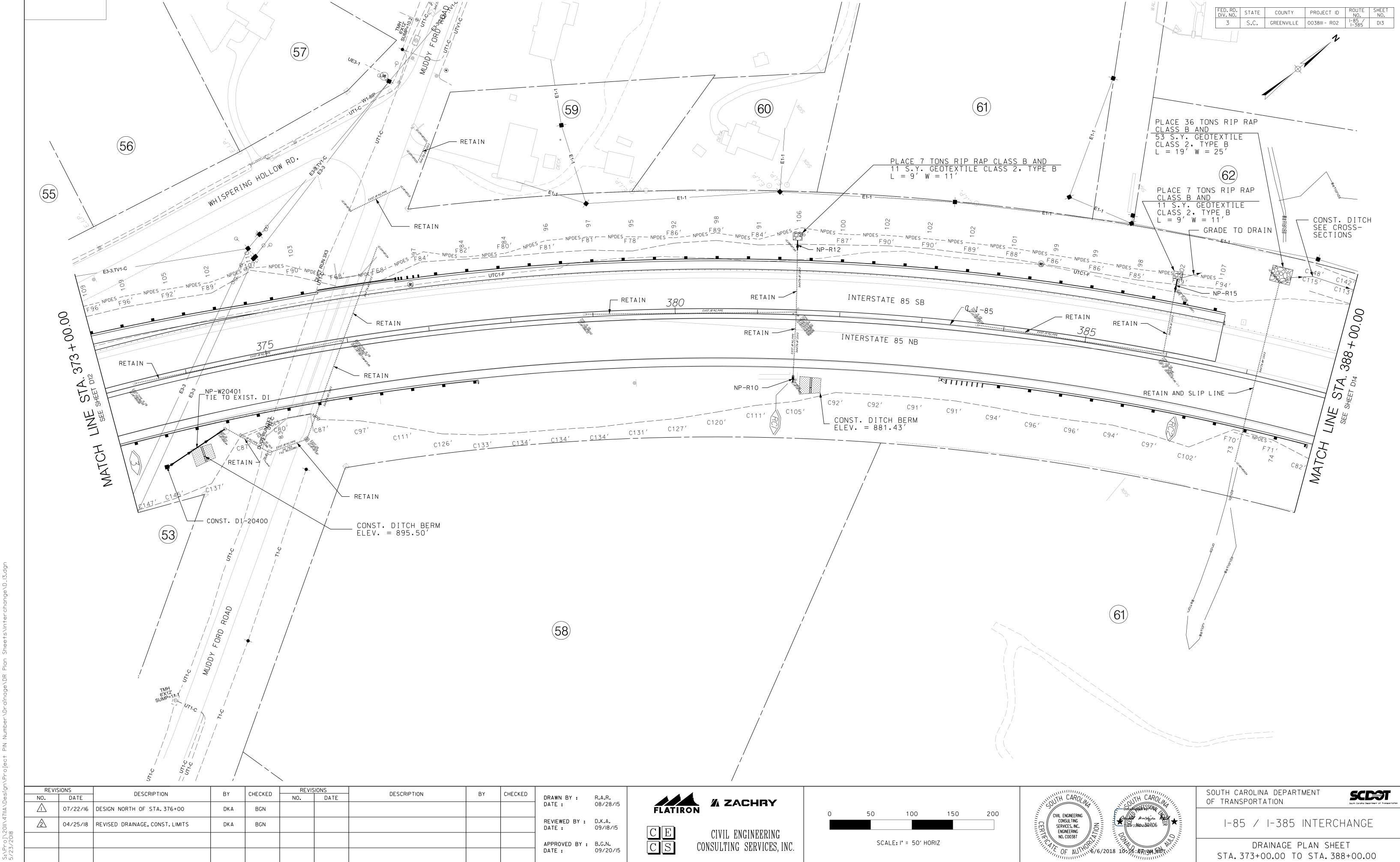
I-85 / I-385 INTERCHANGE

GEOTECHNICAL NOTES

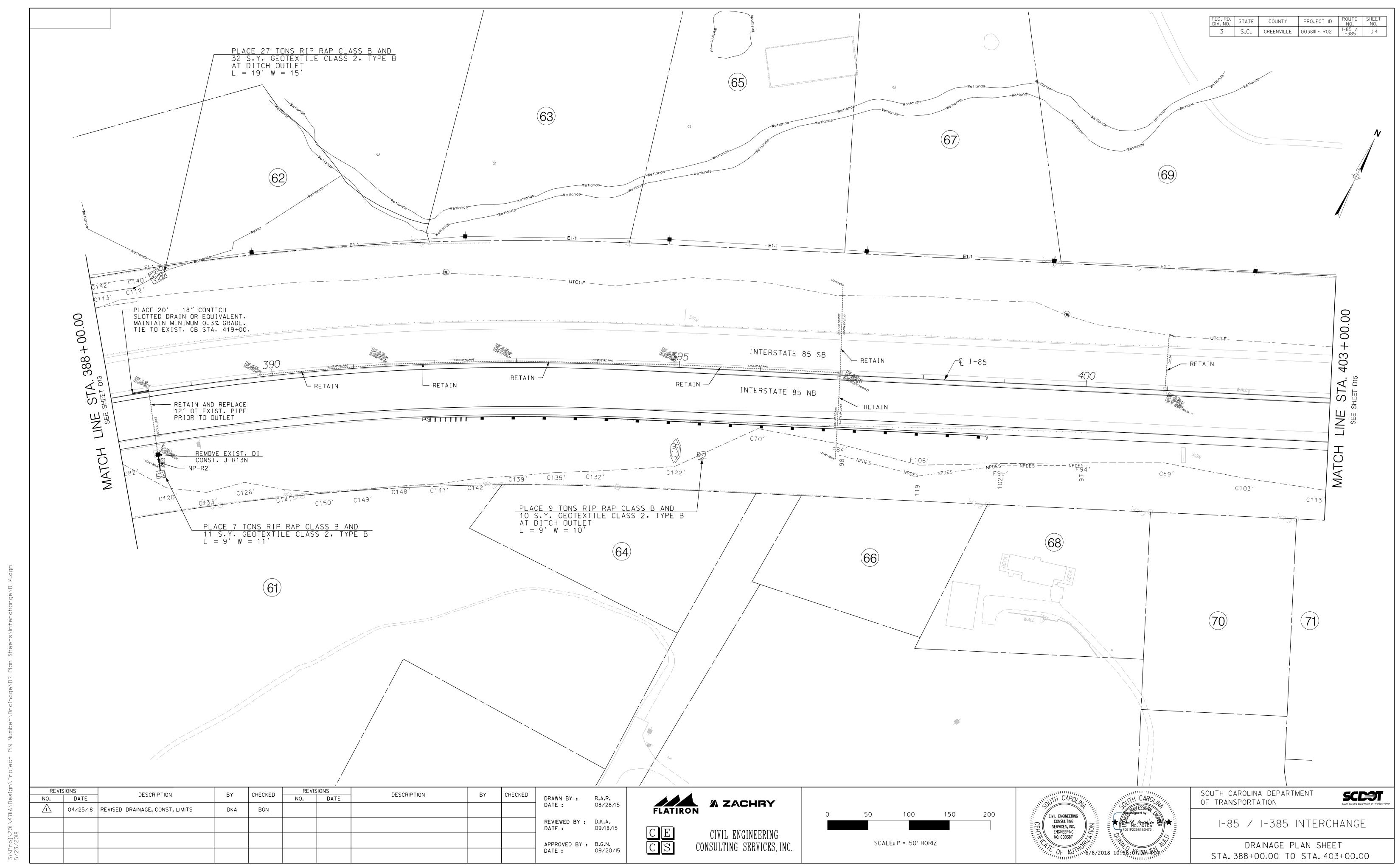

SCDT

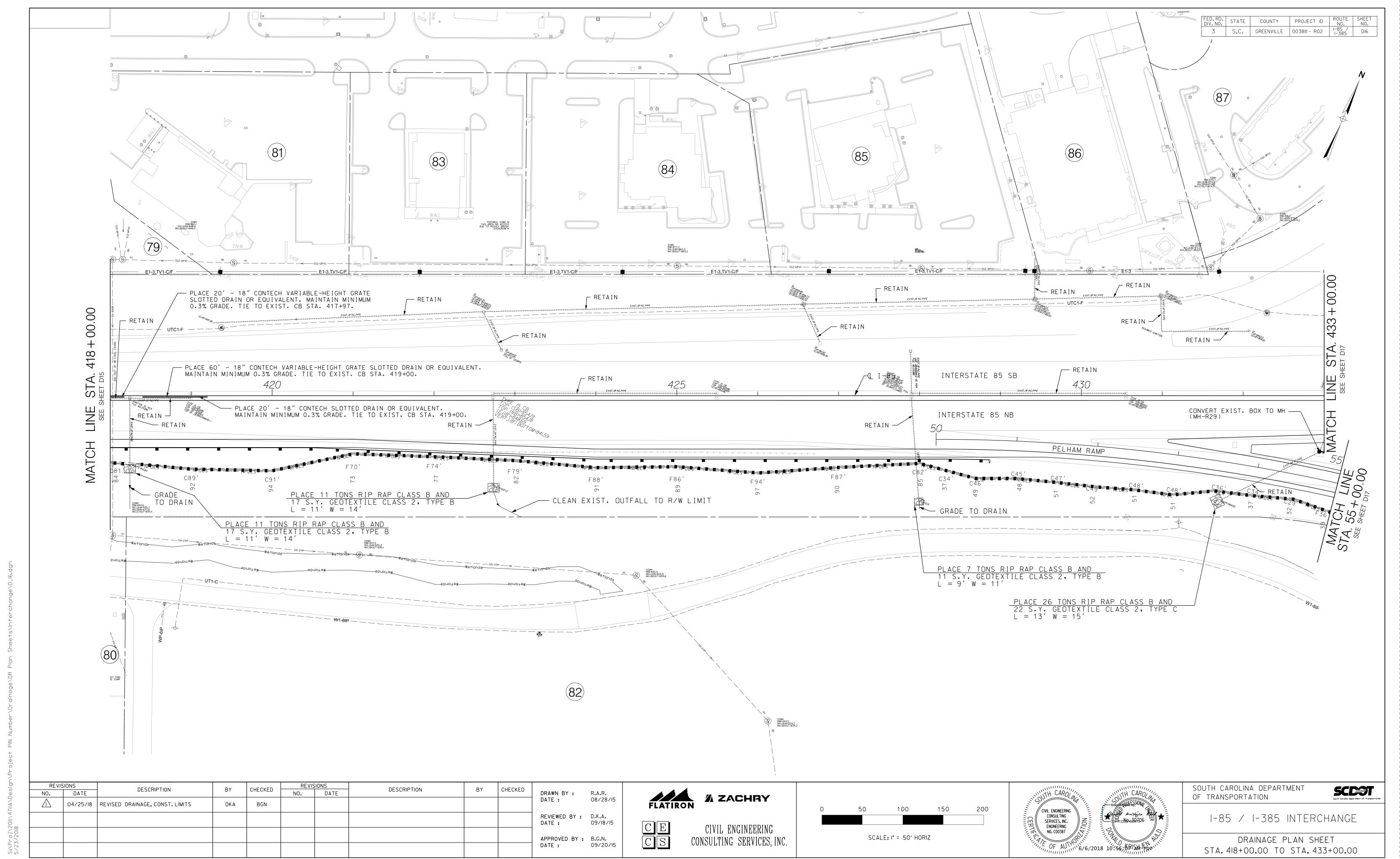





FED. RD. STATE COUNTY PROJECT ID 3 S.C. GREENVILLE 0038III - R02 L000000 (79) 23.412 M.E.A. 6' CHAIN LINK +57.00 -418+ **/**-Q_ I −85 INTERSTATE 85 SB CUR PELHAM_RAMP-I) → PELHAM RAMP 16.00 PRESENT 150' R/W 23.412 M.E.A. SEE SHEET 20 FOR GUARDRAIL NOTE PRESENT 150' R/W 4/S 23.412 M.E.A. TIE EQUALITY: POT STA.428+20.48 I-85 = PC STA.50.00.00 PELHAM RAMP 54.00' RIGHT (BEGIN PELHAM RAMP) PRESENT TRANS. R/W 23.986 M.E.A. 80 CONTRACTOR TO REPLACE EXISTING GUARDRAIL (WITH ASSOCIATED PAVING UNDER GUARDRAIL) WITHIN THE PROJECT LIMITS. LIGHT DUTY PAVING CONSTRUCT CONCRETE BARRIER
AT SIGN SUPPORT
SEE STANDARD DRAWINGS 805-801-00
& 805-804-00 PAVED SHOULDER PAVEMENT REMOVAL ALIGNMENT CONTROL CAN BE FOUND ON REFERENCE DATA SHEETS 5B TO 5K REVISIONS SOUTH CAROLINA DEPARTMENT SCE DESCRIPTION BY CHECKED DESCRIPTION CHECKED CAROLLING ESSY MAN Knade SUTH CAROLIN DRAWN BY: A.W.F DATE: 6/10/15 NO. DATE NO. DATE FLATIRON OF TRANSPORTATION **%** ZACHRY REVISED STA. 386+60 TO 425+00 B.G.N. P.H.R. 5/3/18 CIVIL ENGINEERING CONSULTING SERVICES, INC. ENGINEERING NO. COO387 100 150 200 I-85 / I-385 INTERCHANGE REVIEWED BY : B.A.H. DATE : 09/04/15 CIVIL ENGINEERING SCALE: I" = 50' HORIZ APPROVED BY : B.G.N. CONSULTING SERVICES, INC. PLAN SHEET DATE: 09/20/15 STA. 418+00.00 TO STA. 433+00.00

DocuSign Envelope ID: BED5394D-C65C-43A7-AD8A-7C6342BF1B93

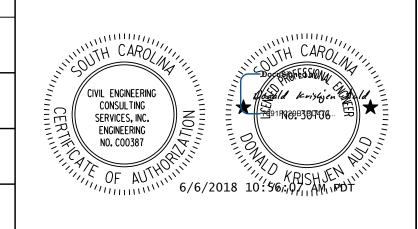


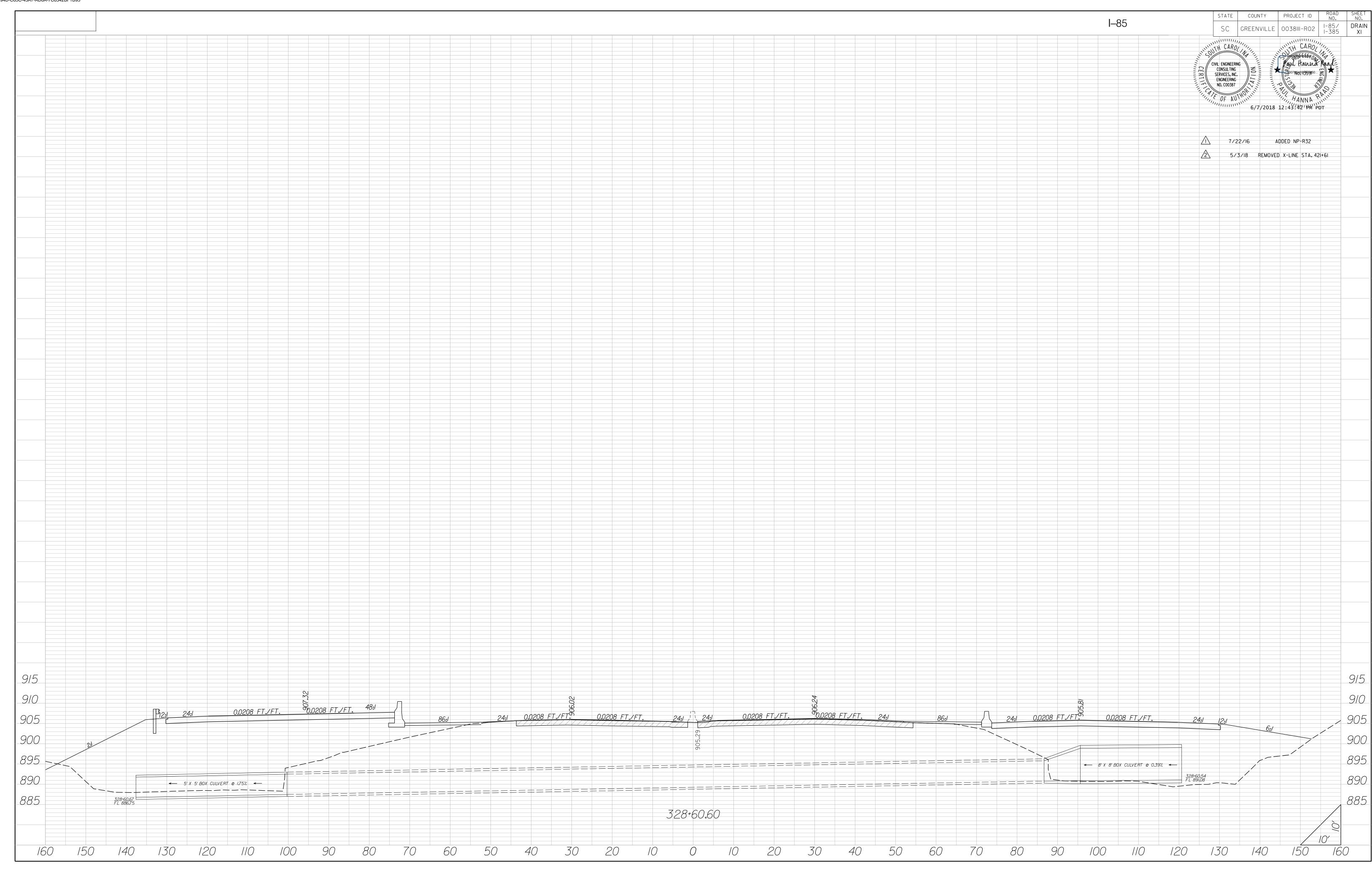


DRAINAGE PLAN SHEET STA. 373+00.00 TO STA. 388+00.00

STORM SEWER DATA SHEET

FED. RD. STATE COUNTY PROJECT ID R

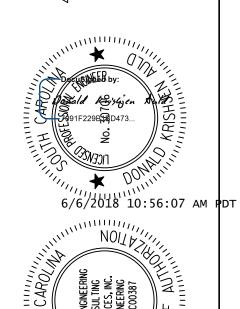

3 S.C. GREENVILLE 0038III - R02


																-
	•	METRY				STREAM		I				NSTREAM		<u> </u>		4
	PIPE	1			NODE	1					NODE	T			ļ!	SPT "N"
ID	DIA. AND MATERIAL	NO. OF BARRELS	LENGTH (FT)	ID	DESCRIPTION	ROAD / ROUTE	STATION	OFFSET	PIPE INVERT (FT)	ID	DESCRIPTION	ROAD / ROUTE	STATION	OFFSET	PIPE INVERT (FT)	
NP-R10	18" SM. WALL PIPE	1	8	DN-R30	DUMMY JOINT	185	381+45.66	82	879.93	DN-R29	DUMMY JOINT	185	381+45.80	74	879.84	
NP-R12			12	DN-R28	DUMMY JOINT	185	381+46.00	-79	877.84	OP-R102	OP	185	381+45.85		877.68	
NP-R15			16	DN-R31	DUMMY JOINT	185	385+95.86	-79	873.06	OP-R103	OP	185	385+95.83	-95	872.67	
NP-R2	18" SM. WALL PIPE	1	18	J-R13N	JB	185	388+45.95	78	869.38	OP-R100	OP	185	388+45.65	98	869.28	
NP-R29			27	CB-R29	DI TYPE 112	PELHAM_RAMP		-33	868.45	MH-R29	CONVERT EXIST. BOX TO MH	185	432+94.00	69	868.04	
																Ī
																↓
																<u> </u>
																<u> </u>
															 '	↓
															 '	
															ļ	
															ļ!	
															<u>'</u>	_
															 /	
																├ ──
																
																
																+
																+
															· · · · · · · · · · · · · · · · · · ·	+
															· · · · · · · · · · · · · · · · · · ·	+
																†
																1
																†
																1
																<u> </u>
																<u> </u>
															<u> </u>	
																
												-				
																<u> </u>

	GEOMETRY				UPSTREAM						DOWNSTREAM					
	PIPE	T	I		NODE	T	1				NODE	T				SPT"
ID	DIA. AND MATERIAL	NO. OF BARRELS	LENGTH (FT)	ID	DESCRIPTION	ROAD / ROUTE	STATION	OFFSET	PIPE INVERT (FT)	ID	DESCRIPTION	ROAD / ROUTE	STATION	OFFSET	PIPE INVERT (FT)	
																\perp
																—
																4
		-														+
																+
																+
																+
																+
																1
																—
																+-
																+
																+
																+
																+
																+
																+
																\top
																\perp
																_
																+
																+
								<u> </u>								+
												<u> </u>				+
																+
								 				1				+
																+
																+
	i	1					•				Ī				1	

						PSTREAM				DOWNSTREAM						
	PIPE		_		NODE		Г				NODE	<u>, </u>			<u> </u>	SPT "N
ID	DIA. AND MATERIAL	NO. OF BARRELS	LENGTH (FT)	ID	DESCRIPTION	ROAD / ROUTE	STATION	OFFSET	PIPE INVERT (FT)	ID	DESCRIPTION	ROAD / ROUTE	STATION	OFFSET	PIPE INVERT	
																↓
																<u> </u>
								-								-
																
															<u> </u>	
																-
																+
																1
															<u> </u>	
															<u> </u>	+
																+
																+
																1
								-							<u> </u>	+
								<u> </u>								+
																<u> </u>
															<u> </u>	₩
								 								+
								<u> </u>								+
																+

REVI	SIONS	DESCRIPTION	BY	CHECKED	REVIS	SIONS	DESCRIPTION	BY	CHECKED	
NO.	DATE		D I	CHECKED	NO.	DATE	- DESCRIPTION		CHECKED	
\triangle	04/20/17	NP-RI,NP-RII,NP-RI3,NP-RI4,NP-R23,NP-R24, NP-R25,NP-R3,NP-R32,NP-R33,NP-R35, NP-R36,NP-R37 AND ASSOCIATED STRUCTURES DELETED.	D.K.A.	B.G.N.						


EROSION CONTROL DATA SHEET

FED. RD. DIV. NO. STATE COUNTY PROJECT ID ROUTE NO. NO. 3 S.C. GREENVILLE 0038111 - R02 1-85 / EC8

RECEIVING WATERS										SOIL TYPES							TEMPORARY EROSION CONTROL BLANKET							ZT				
ROAD/	OUTFALL DI	ТСН	NAME OF RECEIVING		FULTIMATE	ROAD/	OUTFALL DI	I ("H I	NAME OF RECEIVING	NAME OF U		ROAD /	STAT TO		SOIL PAR SIZE (COAR	TICLE RSE /	ZONE		ROAD	/	STA	TION TO	SIDE	DEPTH O	F S	$\frac{\text{LOPES}}{x:1}$	DITCH BOTTOM	MSY
ROUTE	STATION	SIDE	WATERS		NG WATERS	ROUTE	STATION		WATERS	RECEIVING	WATERS	ROUTE	STAT	ION	FINE)				ROUTI	Ξ		TION		(FT)		T BACK	WIDTH (FT)	
I-85 I-85	385+05 386+53	LT LT	ROCKY CREEK ROCKY CREEK		EE RIVER EE RIVER							I-85 I-85	BEG. 413+22	413+22 426+17	FINE COARSI	3	PIEDMONT PIEDMONT											
I-85 I-85	387+61 389+05	RT LT	ROCKY CREEK ROCKY CREEK		EE RIVER EE RIVER							I-85 PEL. RA. *	426+17 BEG.	END END	FINE FINE		PIEDMONT PIEDMONT											
I-85	413+26	RT	ROCKY CREEK	ENORI	EE RIVER							TEL. NA.	DLO.	END	LINE		TIEDMONT											
I-85	418+24 423+25	RT RT	ROCKY CREEK ROCKY CREEK		EE RIVER EE RIVER																							
I-85	427+99	RT	ROCKY CREEK	ENORI	EE RIVER																	FOR	SEE	SHTS. PORARY POL BL	EC9	SION		
PEL. RA.* PEL. RA.*	53+31 54+67	RT RT	ROCKY CREEK ROCKY CREEK		EE RIVER EE RIVER																	C	TIPIC	OL BL	ANKE 1			
122.141.			*PELHAM_RAM									*PELHAM	RAMP															
	* NOTE BASIN I VERTICA "DEPTH	NCISEMENT AL SIDE S OF BASIN	TO BE CONSTRUC LOPES TO DEPTH S	TED WITH		SE	EDIMEN	ΓDAN	<u></u>																			
ROAD /	NO CTATION	CIDE	DRAINED	LENGTH	WIDTH	DEPTH	SIDE SLOPE	SPILLWAY	Y SPILLWAY	TOTAL	SEDIMENT		OUTFA		FALL OUT												TOTALO	
ROUTE	NO STATION		OR NOT DRAINED	OF BASIN	OF BASIN	OF BASIN	OF BASIN	WIDTH	DEPTH	HEIGHT TO SPILLWAY	STORAGE VOLUME				NNEL CHAI PTH LEN												TOTALS	
I-85			UNDRAINED	118	25	1	6:1/2:1	2	1.9	2.9	109	135								SI	EDIM	ENT T	URF	ES IN D)ITCF	IES	1	
I-85 I-85	RC2 386+24 RC3 395+00	RT RT	UNDRAINED UNDRAINED	112 100	10	2.5	6:1/2:1 6:1/2:1	10	3.5	4.5 5.5	414 74	199 156					ROAD /	STA	TION									
																	ROAD / ROUTE	Т	TO TION	$1 \times 11 \times 11$	VERAGE LENGTH	SPACI (FT)		TO	ΓAL		COMMEN	ΓS
																	I-85	387+14	388+92	LT	20	150		(50			
		+ +															I-85 I-85	376+00 383+50		RT RT	10	150			50 20			
																	I-85	384+00	385+50	RT	10	150		2	20			
		+															I-85 I-85	385+50 388+50	386+50 389+50	RT RT	10	100 75			20 30			
																	I-85	389+50	391+50	RT	10	150		3	30			
																	I-85 I-85	391+50 395+00		RT RT	10	100			50 90			
																	I-85	401+00	409+00	RT	10	150			70			
																	PELHAM PELHAM	54+00 61+00	55+00 61+25	LT	10	150 25			20 20			
																	PELHAM	55+00	61+25	RT	10	50		1	40			
				TUR	RF REIN	FORCE	ED MATT	TING (TRM)																			
ROAD/		TION O	SIDE	PTH OF MAT	$\frac{1}{x}$ SLO	OPES · 1	DITCH BOTTOM	TYPE	TYPE 1		PE 2	TYPI																
ROUTE	STA	TION		(FT)	FRONT	BACK	WIDTH (FT)		(MSY)		ISY)	(MS)	<u></u>															
I-85 I-85	381+50 415+00		+00 RT +00 RT	3 2	6	0	0	3	1.525 0.000		.000	0.00																
I-85	423+00	426	+00 RT	5	1.5	0	0	2	0.000	0.	.300	0.00	0															
PELHAM	55+00	61-	+25 RT	2	6	2	0	I	1.155	0.	.000	0.00	U															
							TO	TALS	2.681	0.	.300	0.09	4									GRAND '	ТОТАІ		30	Mining.	H CAROLANIA	TH CAROLANIA
																					\triangle	04/25/18	DJUSTED O REFLE	EROSION CONT	ROL ITEMS DNST. LIMITS	CIAL CIAL CIAL CIAL CIAL CIAL CIAL CIAL	/IL ENGNEERING CONSULTING SERVICES, INC.	Designation Company Co

EROSION CONTROL DATA SHEET

									TE	MPORARY E	ROSIO	N CONT	ROL BLA	NKET							
ROAD / ROUTE	STATION TO STATION			DEPTH OF BLANKET (FT)	1	PES	DITCH BOTTOM WIDTH (FT)	MSY	ROAD / ROUTE	STATION TO STATION	SIDE	DEPTH OF BLANKET (FT)	SLOPES	DITCH BOTTOM WIDTH (FT)	MSY	ROAD / ROUTE	STATION TO STATION	SIDE	DEPTH OF BLANKET (FT)	SLOPES	DITCH BOTTOM WIDTH (FT) MSY
					FRONT	x :1						F	x:1 RONT BACK						FRO	x:1 ONT BACK	
I-85	375+00	375+50	LT	10	4	$\frac{\text{DACK}}{0}$	0	0.229				Γ	RON1 DACK						TIM	DACK	
I-85	375+50	375+25	LT	10	2	0	0	0.062													
I-85	377+00	379+50	LT	6	2	0	0	0.373													
I-85 I-85	381+50 386+50	386+00 387+00	LT LT	8 14	2 2	0	0	0.894 0.174													
I-85	387+50	388+50	LT	6	2	2	10	0.409													
I-85	376+50	376+50	RT	12	0	2	0	0.000													
I-85	377+00	380+50	RT	20	0	2	0	1.739													
I-85 I-85	381+00 381+50	381+50 382+00	RT RT	9	0	2	0 0	0.186 0.112													
I-85	384+50	385+50	RT	6	0	2	0	0.149													
I-85	388+50	389+00	RT	8	6	2	0	0.370													
I-85	389+00	389+50	RT PT	18 21	0	2	0	0.224													
I-85 I-85	389+50 390+00	390+00 391+50	RT RT	31	0	2	0	1.155													
I-85	391+50	392+50	RT	25	0	2	0	0.621													
I-85	392+50	394+00	RT	20	0	2	0	0.745													
I-85 I-85	393+50 394+00	396+00 396+00	RT RT	8	6	2	0	1.352 0.398													
I-85	397+00	398+00	RT	8	2	0	0	0.199													
I-85	398+00	401+00	RT	8	4	0	0	1.099													
I-85	402+00	403+00	RT	10	0	2	0	0.248													
I-85 I-85	403+00 405+00	405+00 408+00	RT RT	20 25	0	2	0 0	0.994 1.863				1									
I-85	403+00	409+00	RT	10	0	2	0	0.248													
I-85	424+00	426+00	RT	5	1.5	0	0	0.200													
I-85	426+00	427+50	RT	8	4	0	0	0.550													
														+ -							
	-													-							
														+ -							

		BRIDGES T	O BE CONSTRUCTED	
BRIDGE NO.	ROAD NO.	LENGTH	STA. TO STA.	LOCATION
1/2A	I-385 SB	201.85′	374+34.76 TO 376+36.6I	GARLINGTON RD. & GE RAILROAD OVERPASS
28	1-385 NB	201.50′	374+96.79 TO 376+98.29	GARLINGTON RD. & GE RAILROAD OVERPASS
3	I-385 NB CD	201.50′	376+37.60 TO 378+39.10	GARLINGTON RD. & GE RAILROAD OVERPASS
4	RAMP 8	148.17′	57+85.53 TO 59+33.70	1-385 NB CD OVERPASS
5	RAMP IA	1522.83′	72+79.42 TO 88+02.25	I-385 & I-85 OVERPASS
6	RAMP 4B	1962.83′	390+18.50 TO 409+81.33	I-385 & I-85 OVERPASS
7	RAMP 2B	475.00′	34+16.95 TO 38+91.95	I-85 OVERPASS
8	RAMP 3A	254.85′	297+8I.45 TO 300+36.30	I-85 OVERPASS
9	RAMP 2A	368.84′	7I+70.8ITO 75+39.65	I-85 OVERPASS
10	RAMP IB	220.05′	69+II.35 TO 7I+3I.40	RAMP 4B OVERPASS
12	1-385	497.17′	395+34.84 TO 400+32.0I	I-85 OVERPASS

BRIDGE PLANS BOUND UNDER SEPARATE COVER

ENVIRONMENTAL PERMIT INFORMATION							
USACE PERMIT	_X_YES	NO					
NEPA DOCUMENT	X YES	NO					
401 CERTIFICATION	_X_YES	NO					
OCRM CAP	YES	_X_NO					
NAVIGABLE WATERSSC	USCG	USACE	_X_N/A				

3 DAYS BEFORE DIGGING IN SOUTH CAROLINA

CALL 811

SOUTH CAROLINA 811 (SC811) WWW.SC811.COM ALL UTILITIES MAY NOT BE A MEMBER OF SC811

> RAILROAD INVOLVEMENT? YES/ NO

	TRAFFIC DATA	
	I–85	I–385
2015 ADT	118,200	106,500
2035 ADT	174,700	171,400
TRUCKS	18 %	18 %

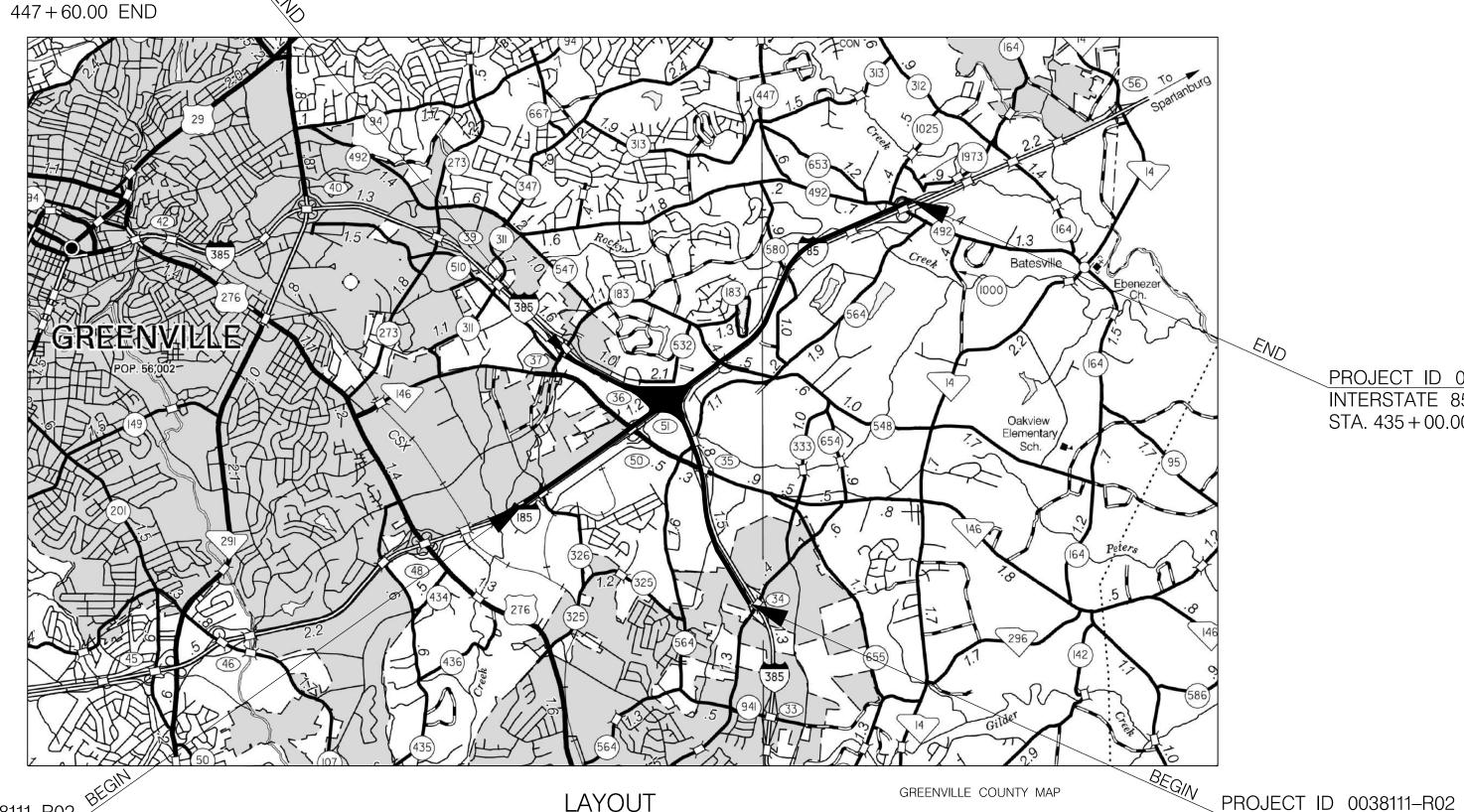
REVIS	SIONS	DESCRIPTION	BY	CHECKED
NO.	DATE	DESCRIPTION	БТ	CHECKED
\triangle	1/27/16	SHEET TOTAL REVISED	D.R.R.	B.G.N.
2	5/02/16	SHEET TOTAL REVISED	D.R.R.	B.G.N.
3	5/12/16	SHEET TOTAL REVISED	D.R.R.	B.G.N.
4	6/17/16	SHEET TOTAL REVISED	D.R.R.	R.L.K
<u></u>	7/8/16	SHEET TOTAL REVISED	D.R.R.	R.L.K
<u></u>	8/9/16	SHEET TOTAL REVISED	D.R.R.	R.L.K
À	8/18/16	SHEET TOTAL REVISED	D.R.R.	R.L.K

INTERSTATE 385

RELEASE FOR

CONSTRUCTION PLANS

PROPOSED PLANS FOR


GREENVILLE COUNTY

PROJECT ID 0038111 - R02

INTERSTATE 85 / 385 INTERCHANGE

FROM: 0.20 MILES SOUTH OF S-326 PROJECT ID 0038111-R02

TO: ROAD S-492

LAYOUT PROJECT ID 0038111-R02 (NOT TO SCALE) INTERSTATE 85 I-385 CD's 203+00.00 BEGIN

NET LENGTH OF ROADWAY	4.394	MILES	2.551	MILES	9.035	MILES	2.867	MILES	18.757	MILES
NET LENGTH OF BRIDGES	-	MILES	0.171	MILES	0.938	MILES	0.038	MILES	1.147	MILES
NET LENGTH OF PROJECT	4.394	MILES	2.722	MILES	9.973	MILES	2.905	MILES	19.993	MILES
LENGTH OF EXCEPTIONS	-	MILES	-	MILES	-	MILES	-	MILES	-	MILES
GROSS LENGTH OF PROJECT	4.394	MILES	2.722	MILES	9.973	MILES	2.905	MILES	19.993	MILES

EQUALITIES IN STATIONING

NONE

NOTE: EXCEPT AS MAY OTHERWISE BE SPECIFIED ON THE PLANS OR IN THE SPECIAL PROVISIONS, ALL MATERIALS AND WORKMANSHIP ON THIS PROJECT SHALL CONFORM TO THE SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS FOR HIGHWAY CONSTRUCTION (2007 EDITION) AND THE STANDARD DRAWINGS FOR ROAD CONSTRUCTION IN EFFECT AT THE TIME OF LETTING.

8	9/12/16	BRIDGE LENGTHS I/2A, 2B, 3. SHT. TTL RVSD	D.R.R.	12	1/12/17	SHEET TOTAL REVISED
<u></u>	9/28/16	SHEET TOTAL REVISED	B.G.N.	13	2/2/17	SHEET TOTAL REVISED
\triangle	10/21/16	SHEET TOTAL REVISED	B.G.N.	14	3/16/17	SHEET TOTAL REVISED
\bigwedge	10/28/16	SHEET TOTAL REVISED	B.G.N.	15	12/18/17	SHEET TOTAL REVISED

PROJECT ID 0038111-R02

STA. 435 + 00.00 END

INTERSTATE 85

Disturbed Area = 160.5 Acre(s) Permitted Area = 349.7 Acre(s)

CONTRACT ID 5384210

Hydraulic Design Reference for these plans in the:

2009

Edition of SCDOT'S "Requirements for Hydraulic Design Studies"

Design Reference for these plans is the:

2001

AASHTO "A Policy on Geometric Design of Highways and Streets"

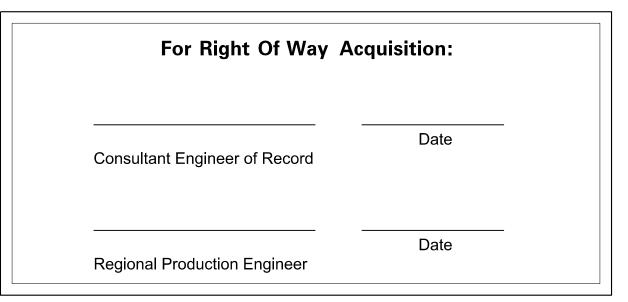
UNLESS OTHERWISE NOTED ON TYPICAL SECTION

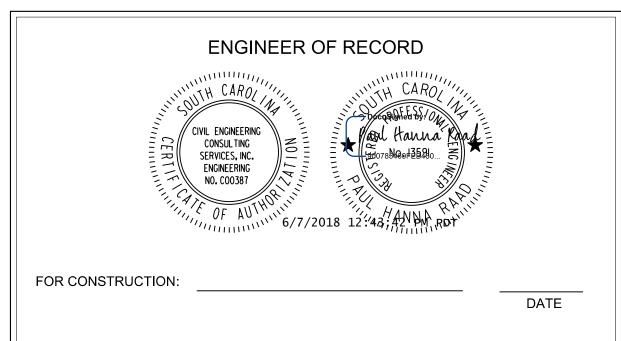
NPDES PERMIT INFORMATION

Approximate Location of Roadway is Begin 34° 50' 20' N Latitude 82° 17' 26' W End

> 34° 50' 02' N 82° 17' 27' W

Hydraulic and NPDES Design

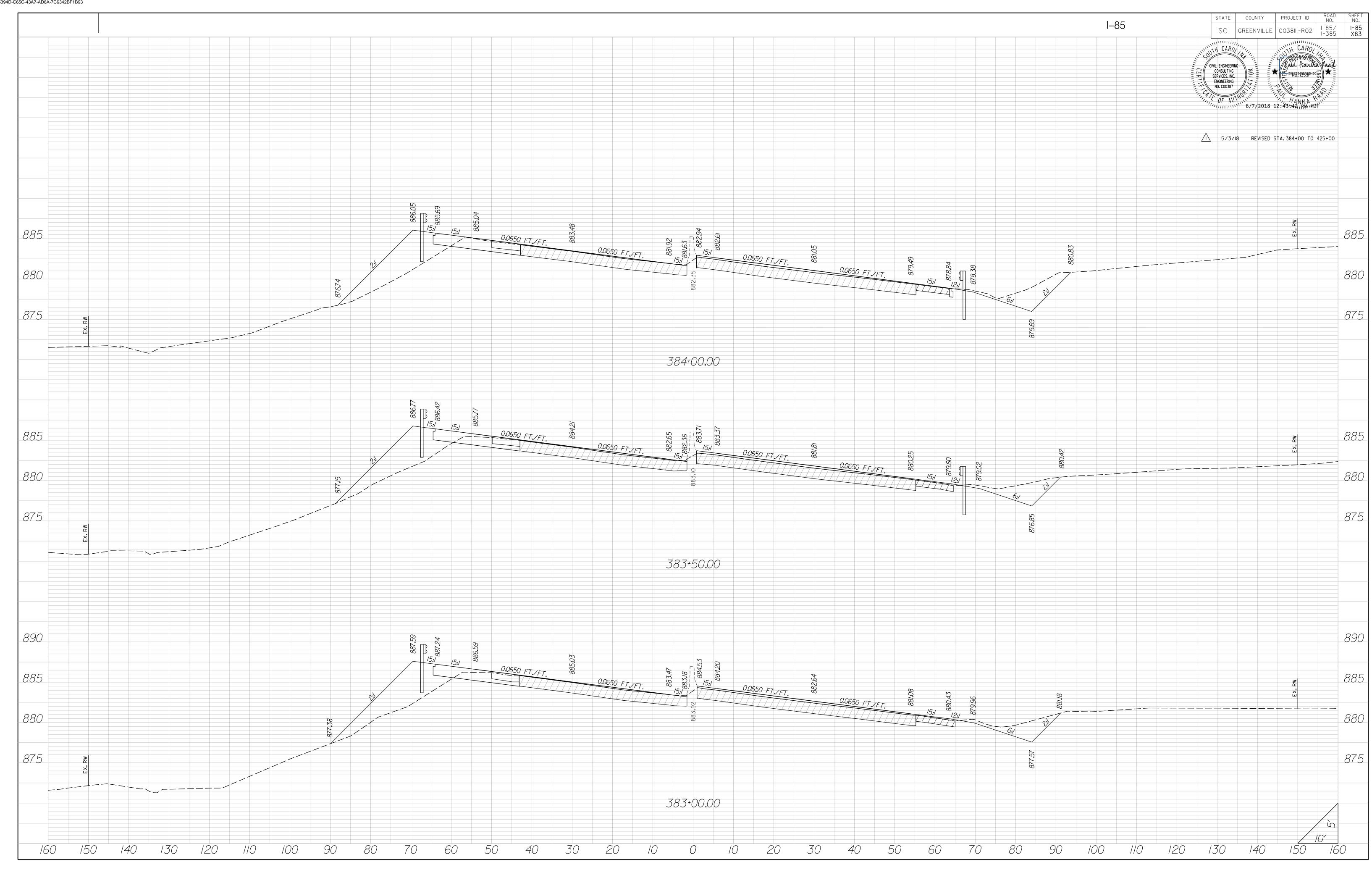

CECS, Inc.

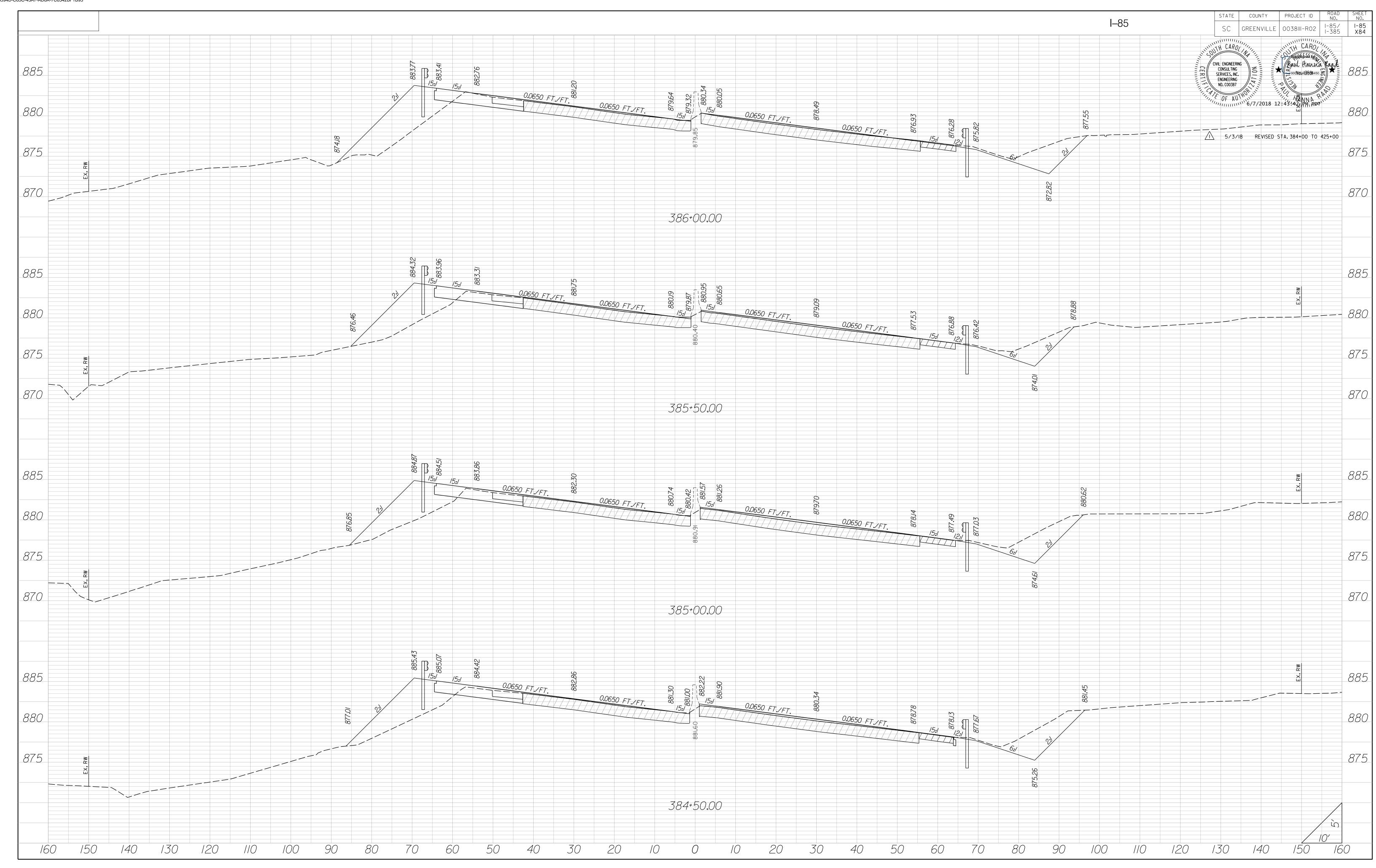

Designs may be obtained from the SCDOT Regional Production Group

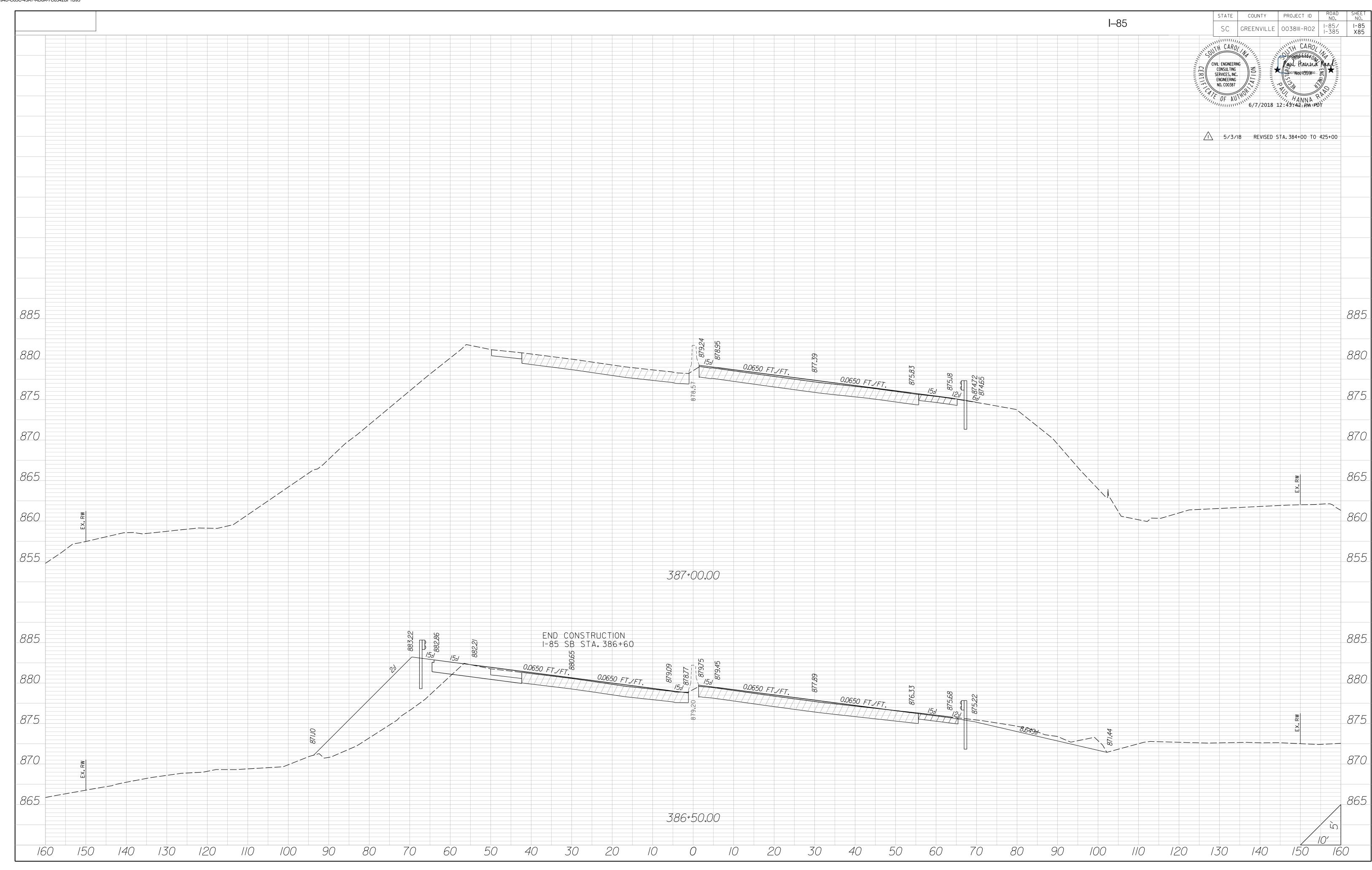
provided by:

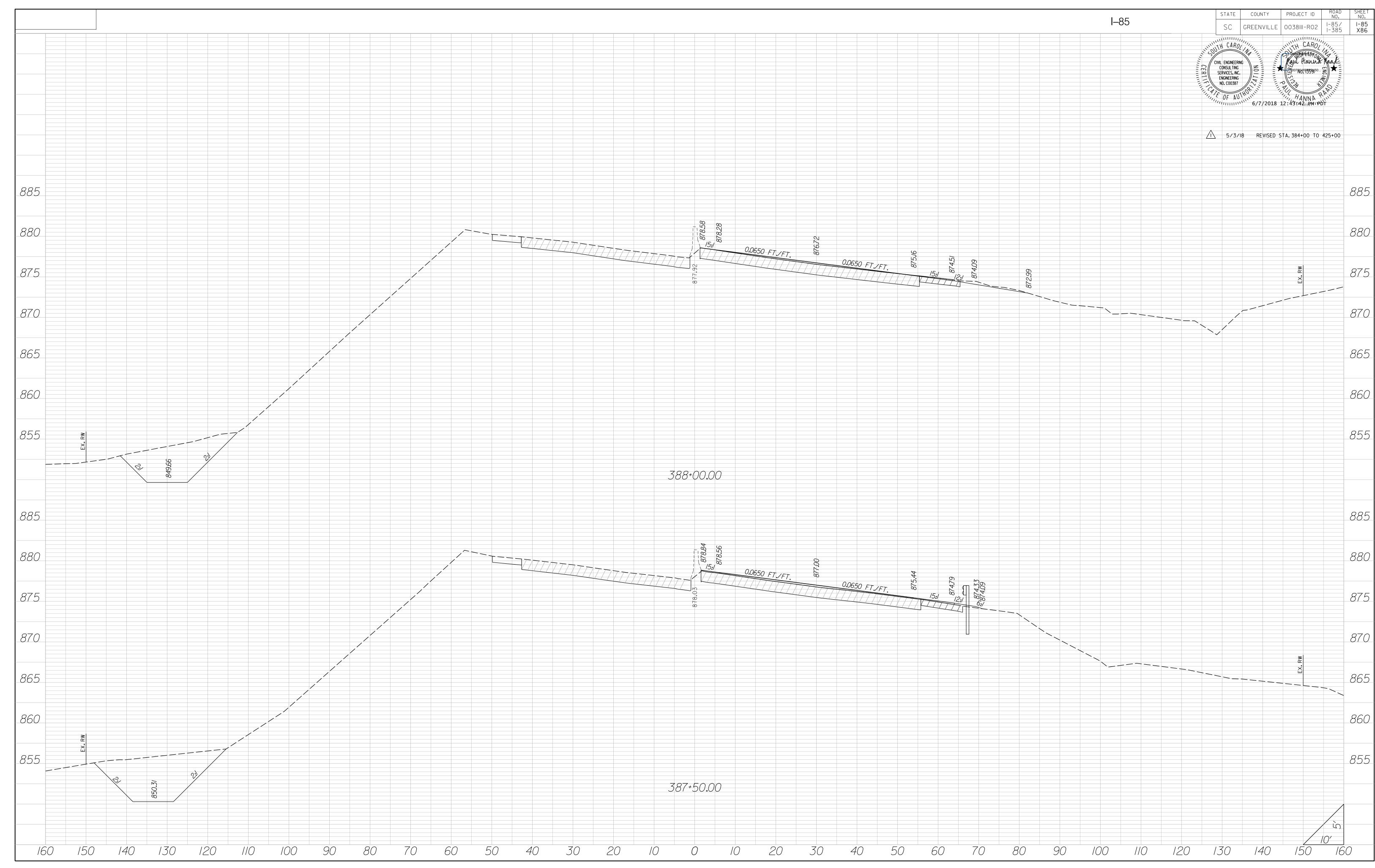
SCDOT REVIEW		OF-WAY DATE	CONSTRI	JCTION DATE
PRECONSTRUCTION SUPPORT - ROAD				
PRECONSTRUCTION SUPPORT - STRUCTURES				
RPG - DESIGN MANAGER				
RPG - PROGRAM MANAGER				

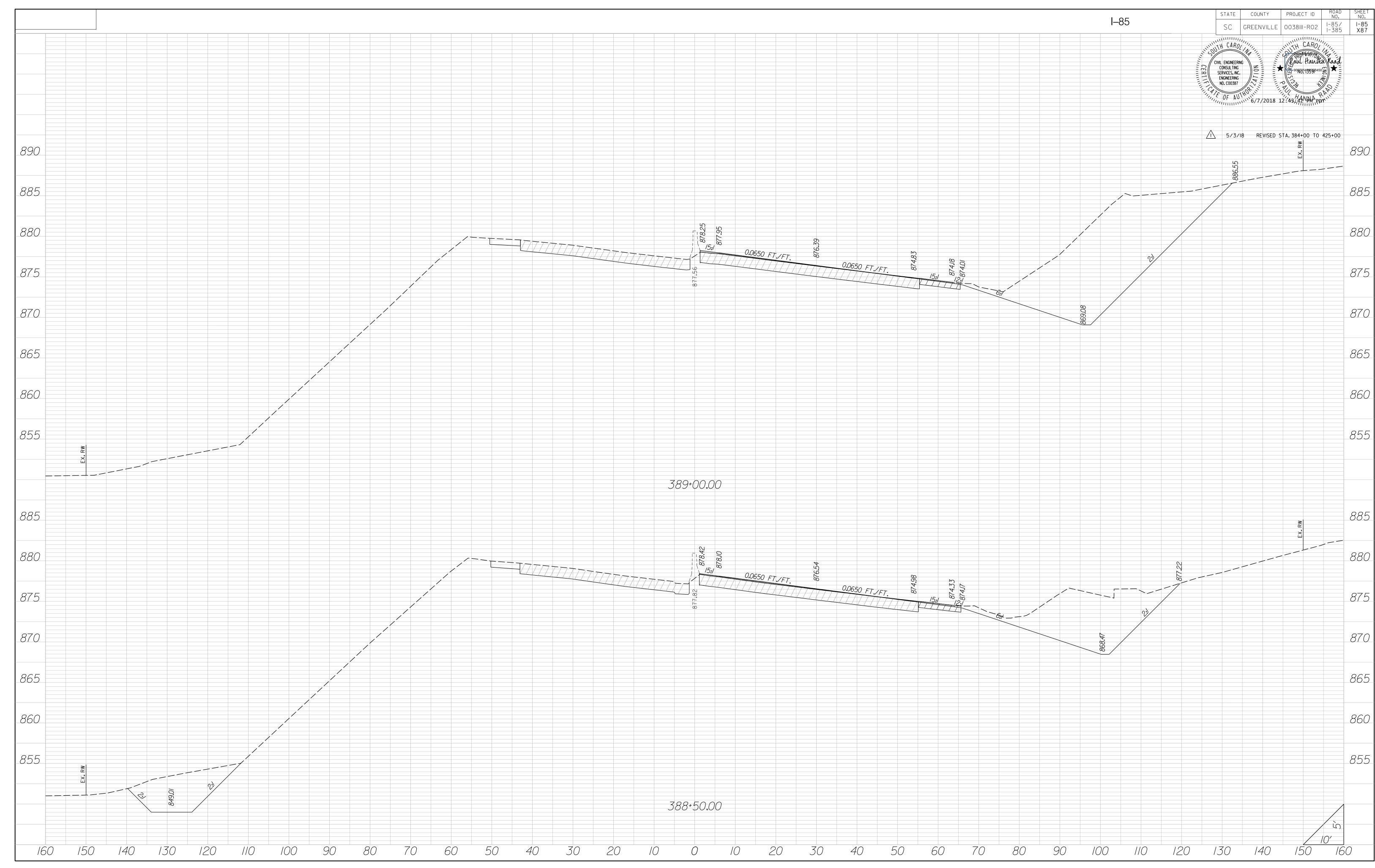
THE INITIALS ABOVE DO NOT RELIEVE THE ENGINEER OF RECORD OF THE RESPONSIBILITY TO DESIGN THIS PROJECT IN ACCORDANCE WITH ALL APPLICABLE CRITERIA.

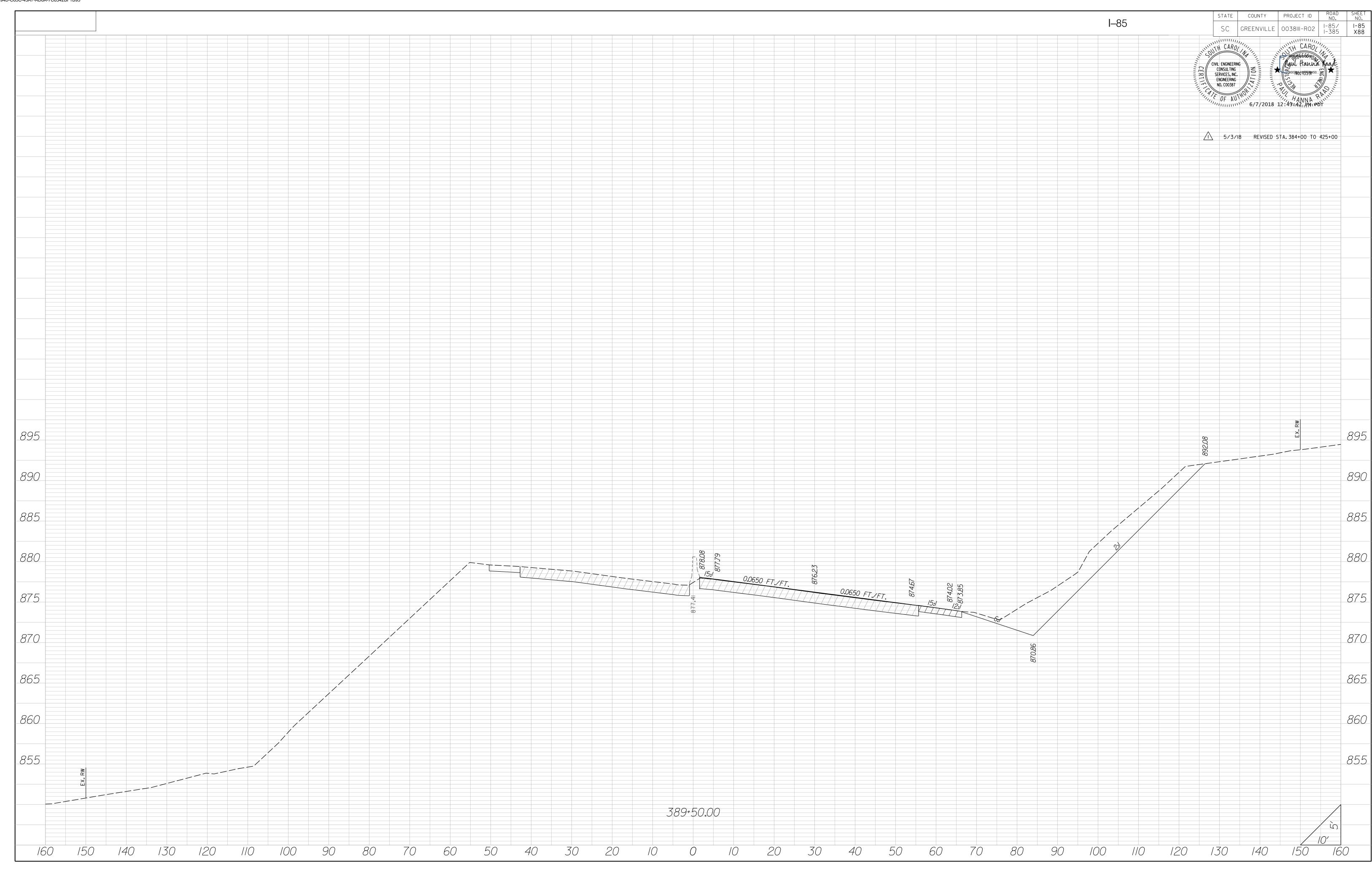


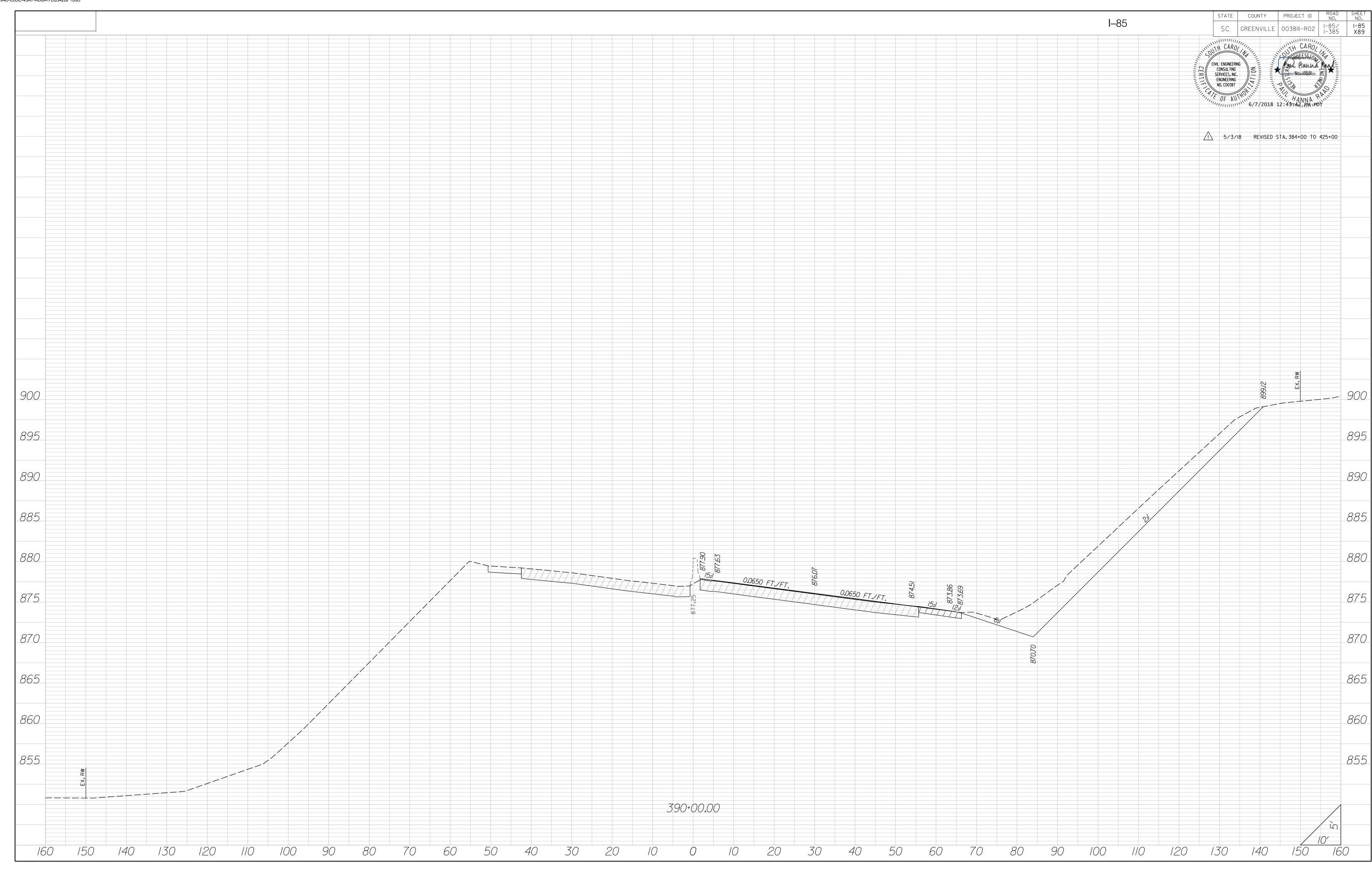

CONSULTING ENGINEERING FIRM **%** ZACHRY CIVIL ENGINEERING CONSULTING SERVICES, INC 2000 PARK STREET SUITE 201 COLUMBIA, S.C. 29201

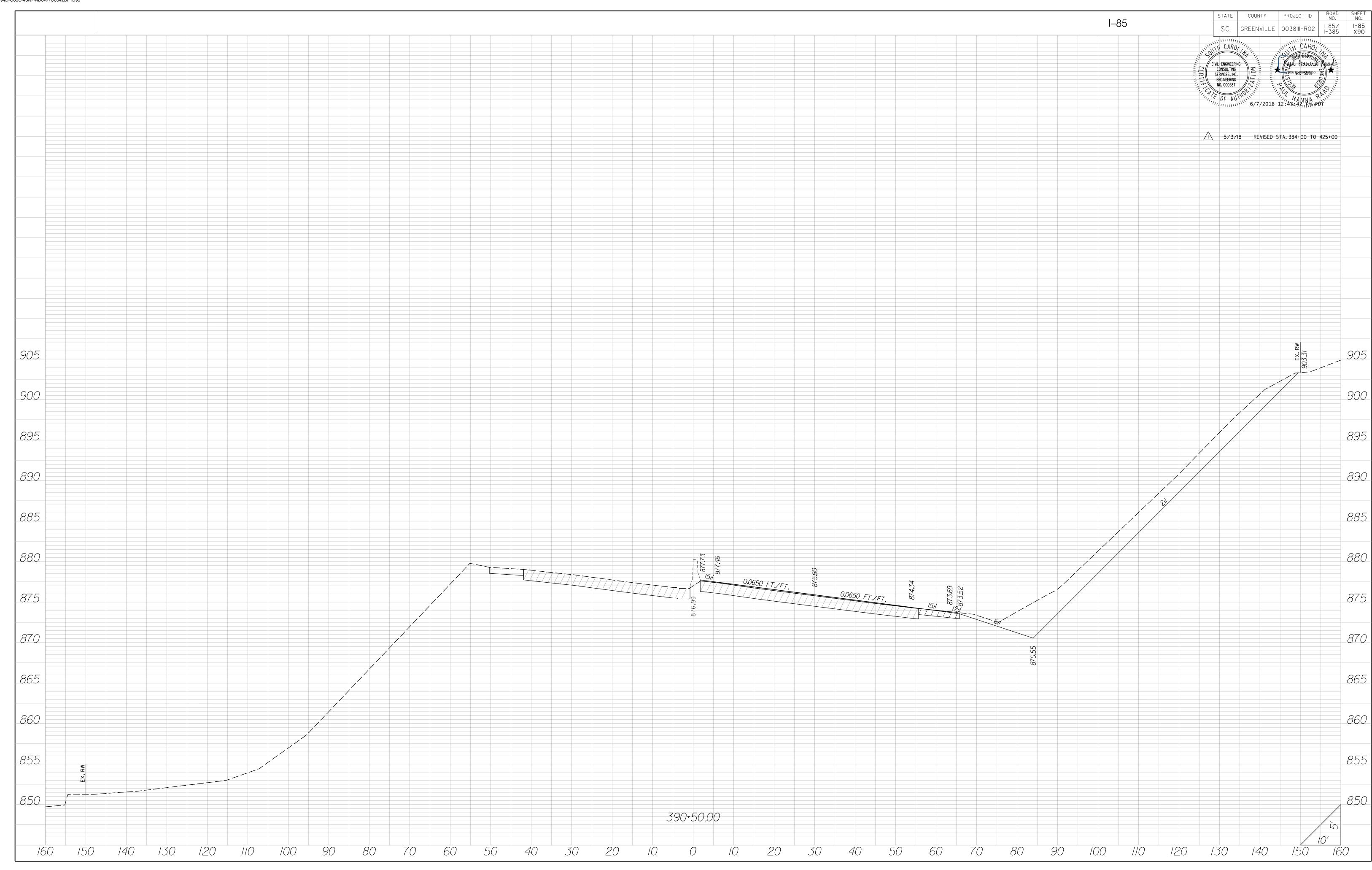

B.G.N.

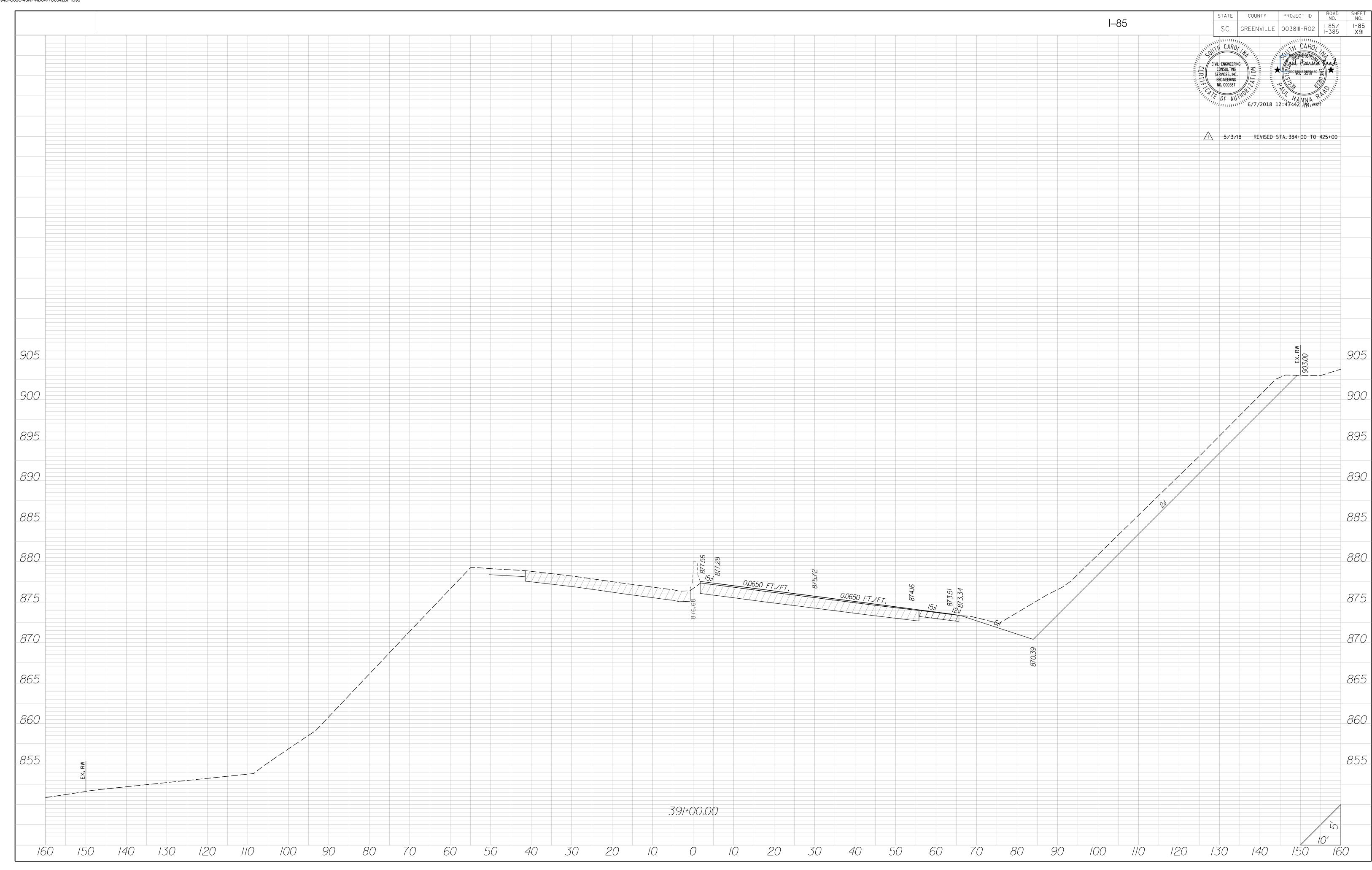

INTERSTATE 385

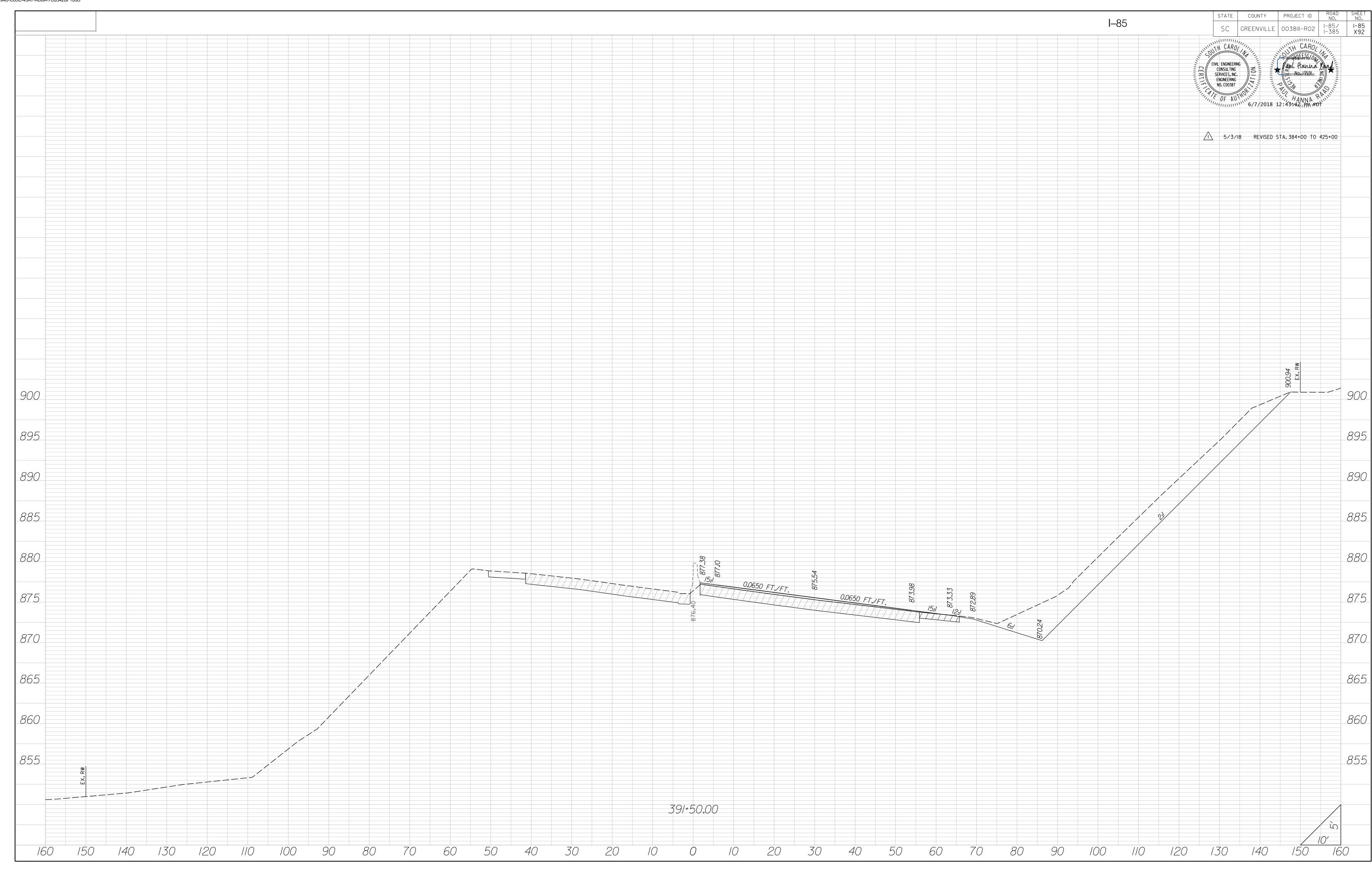

303 + 89.49 BEGIN

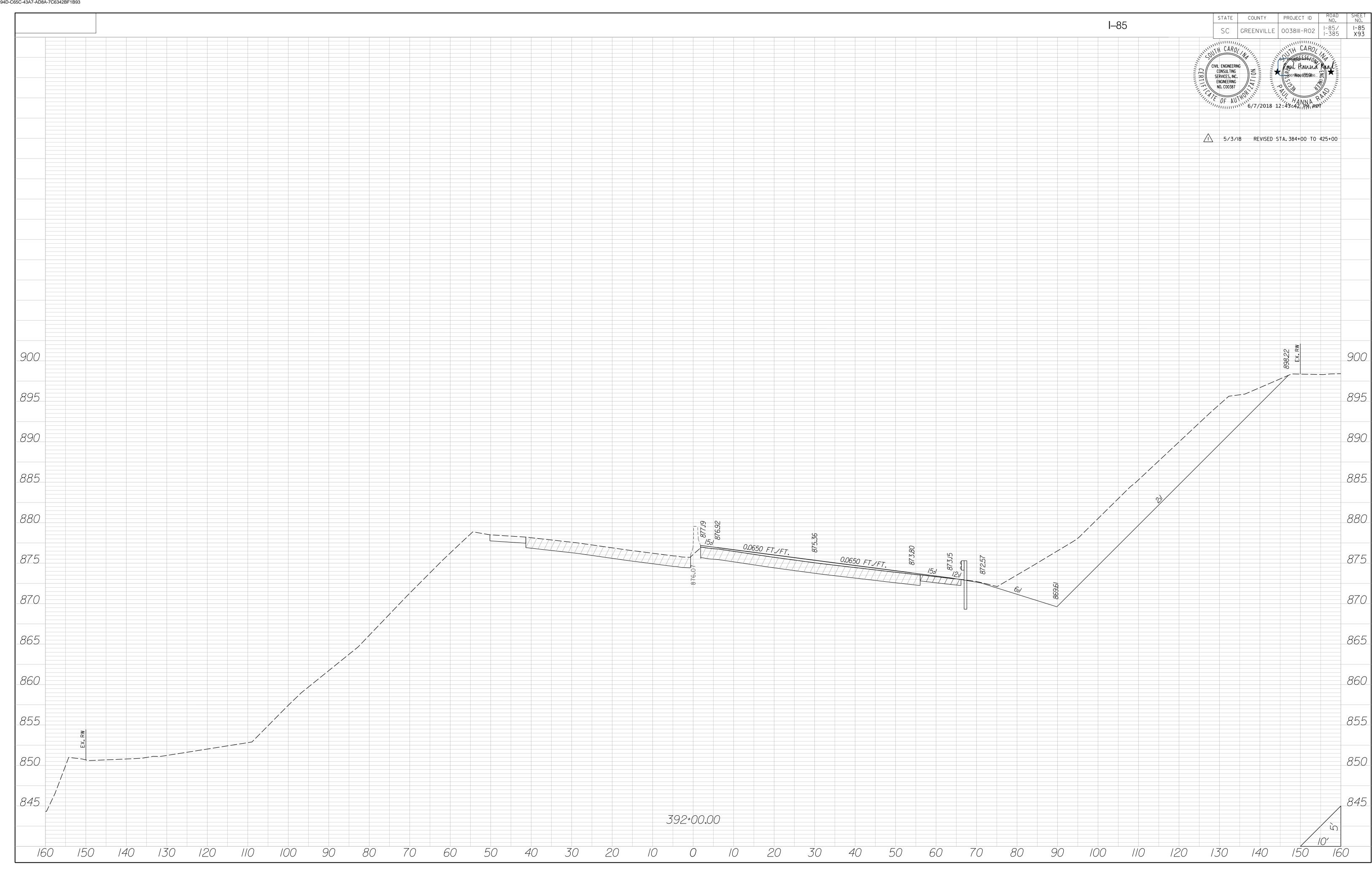


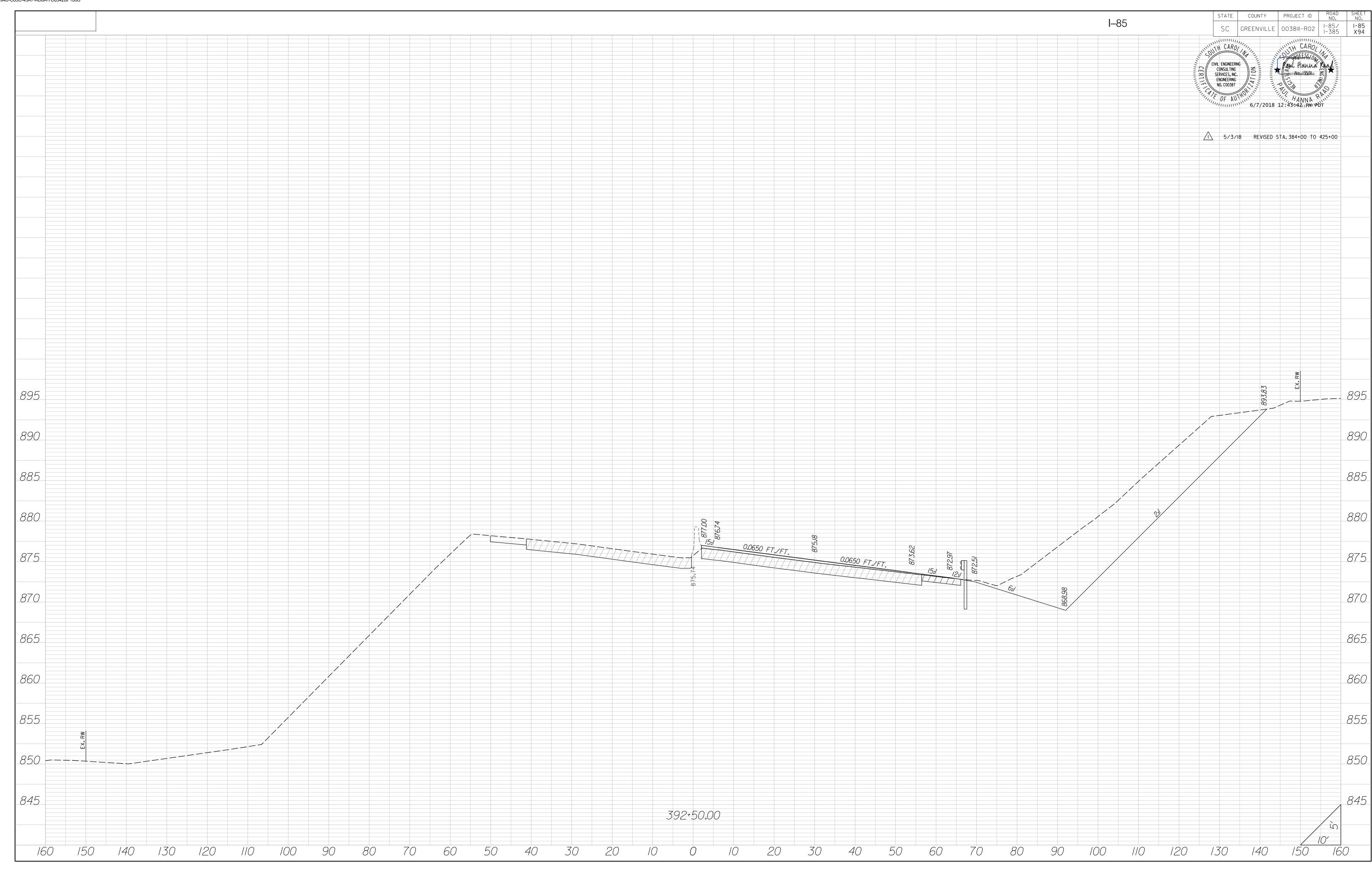


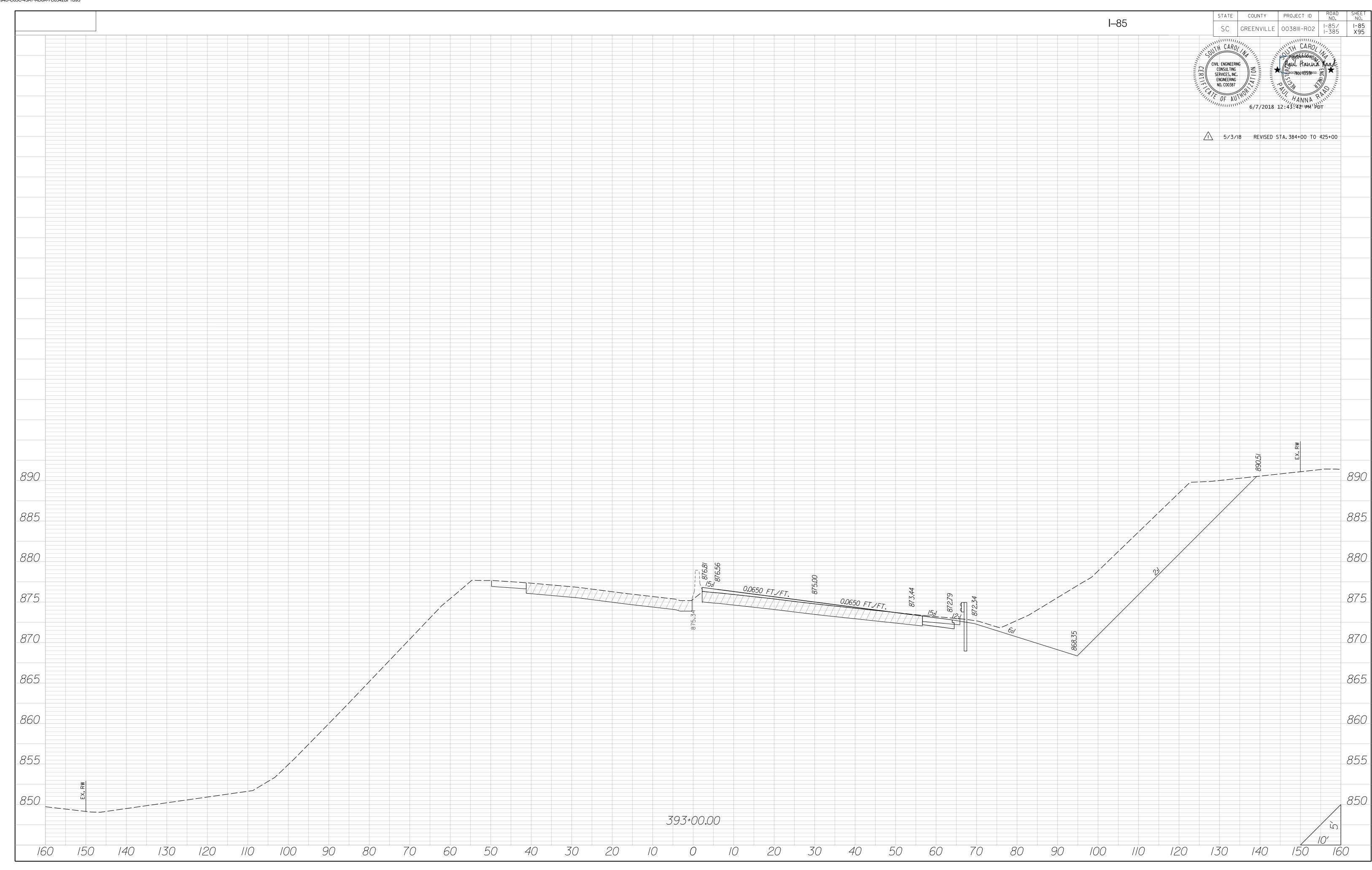


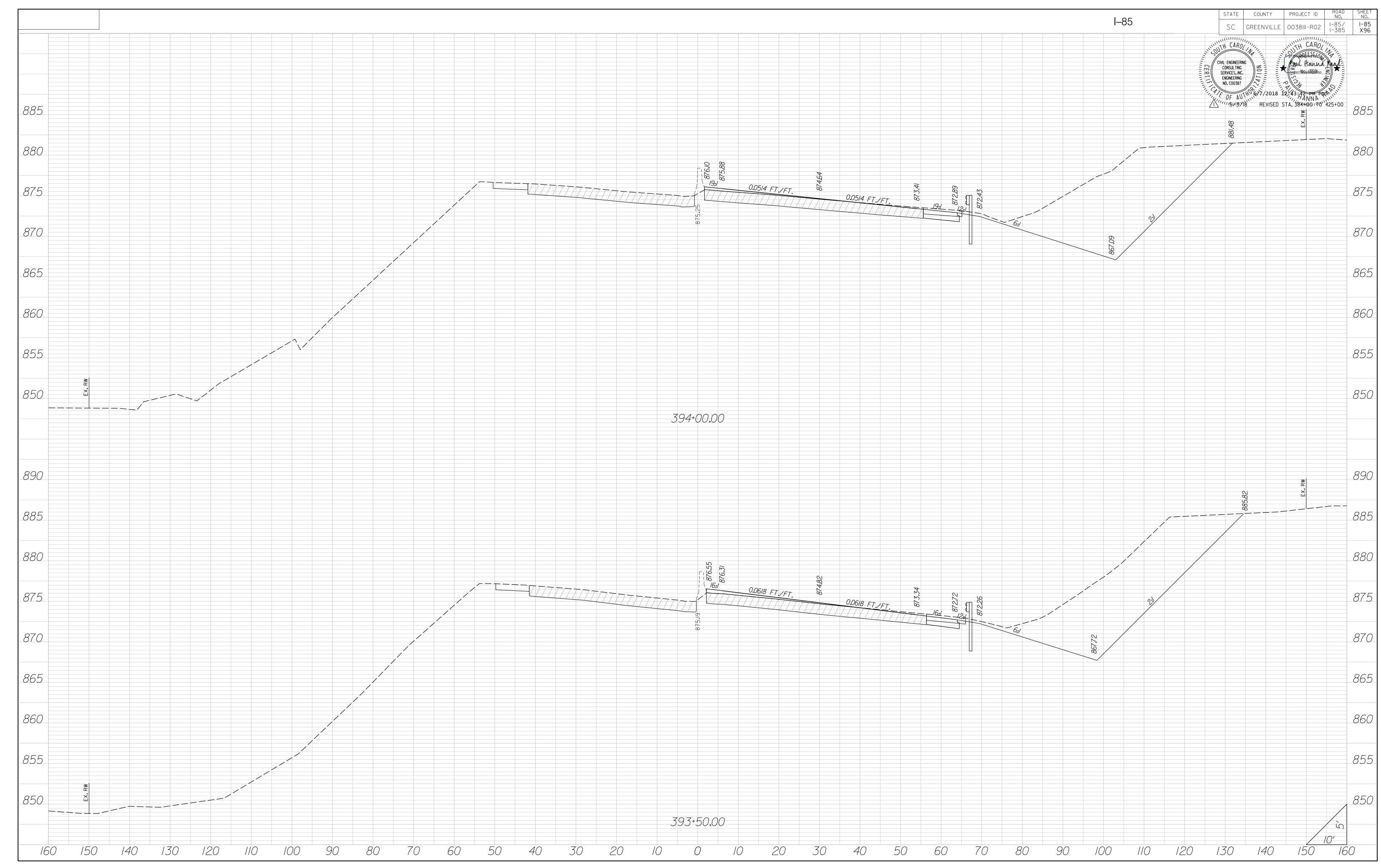


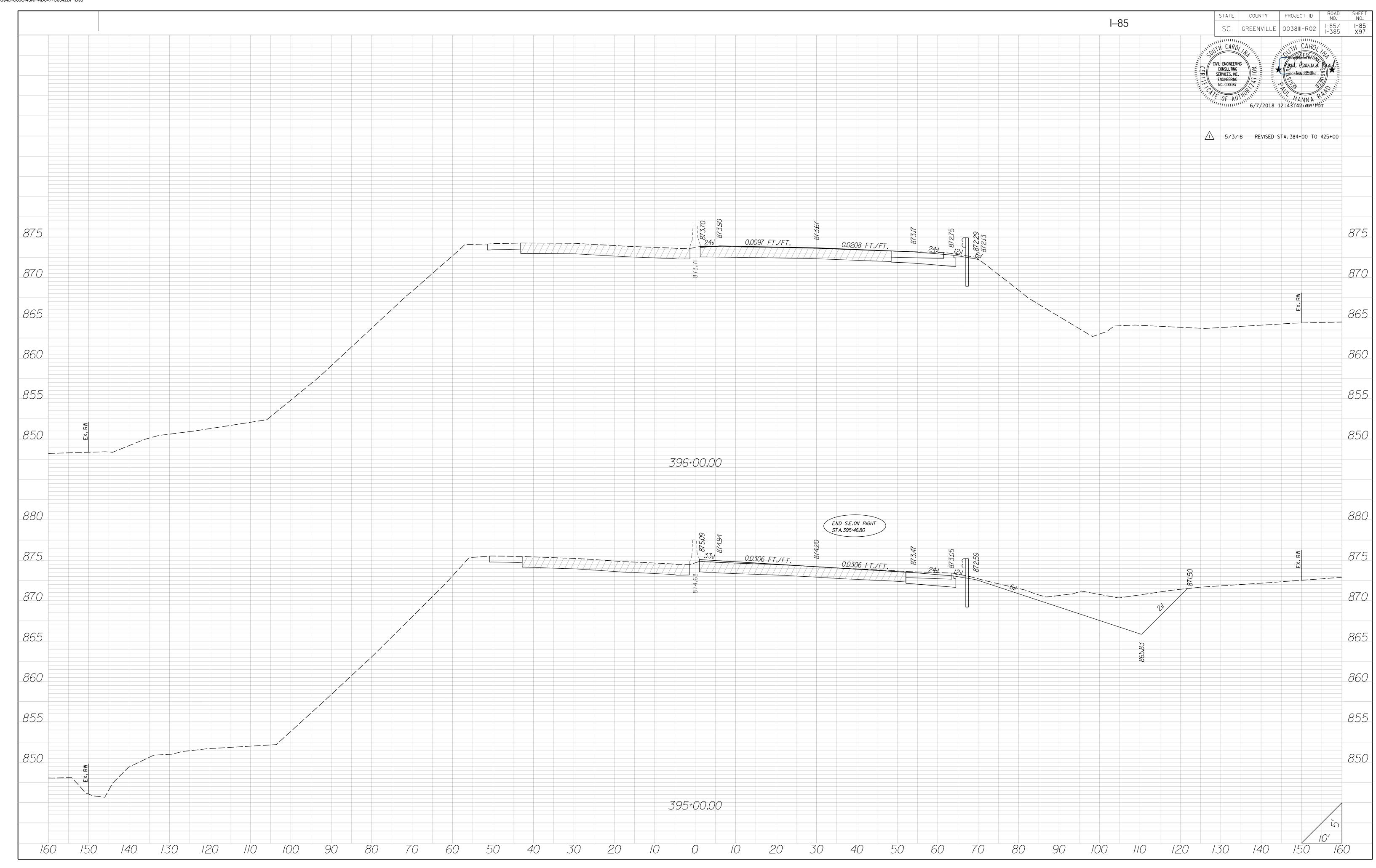


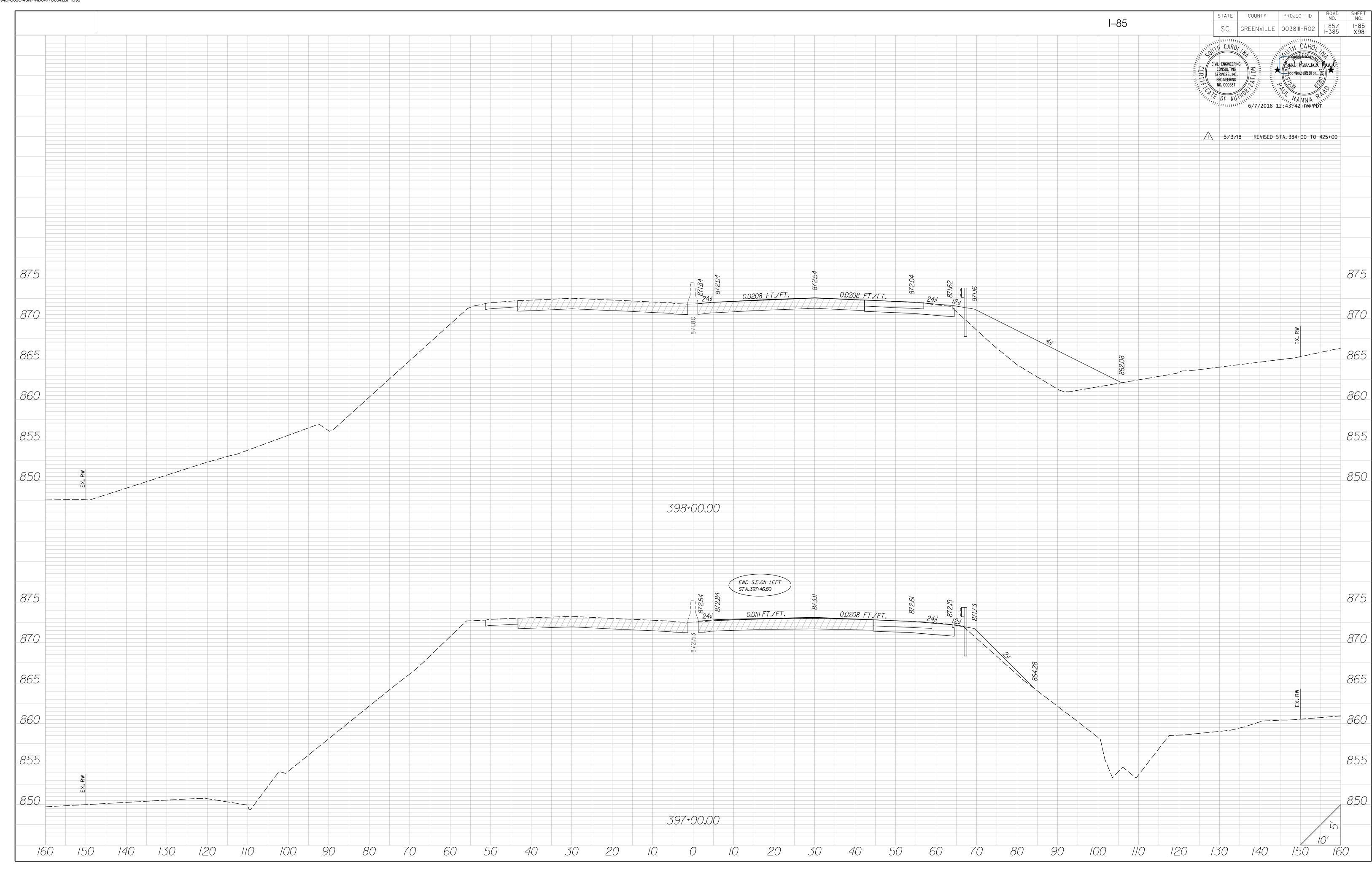


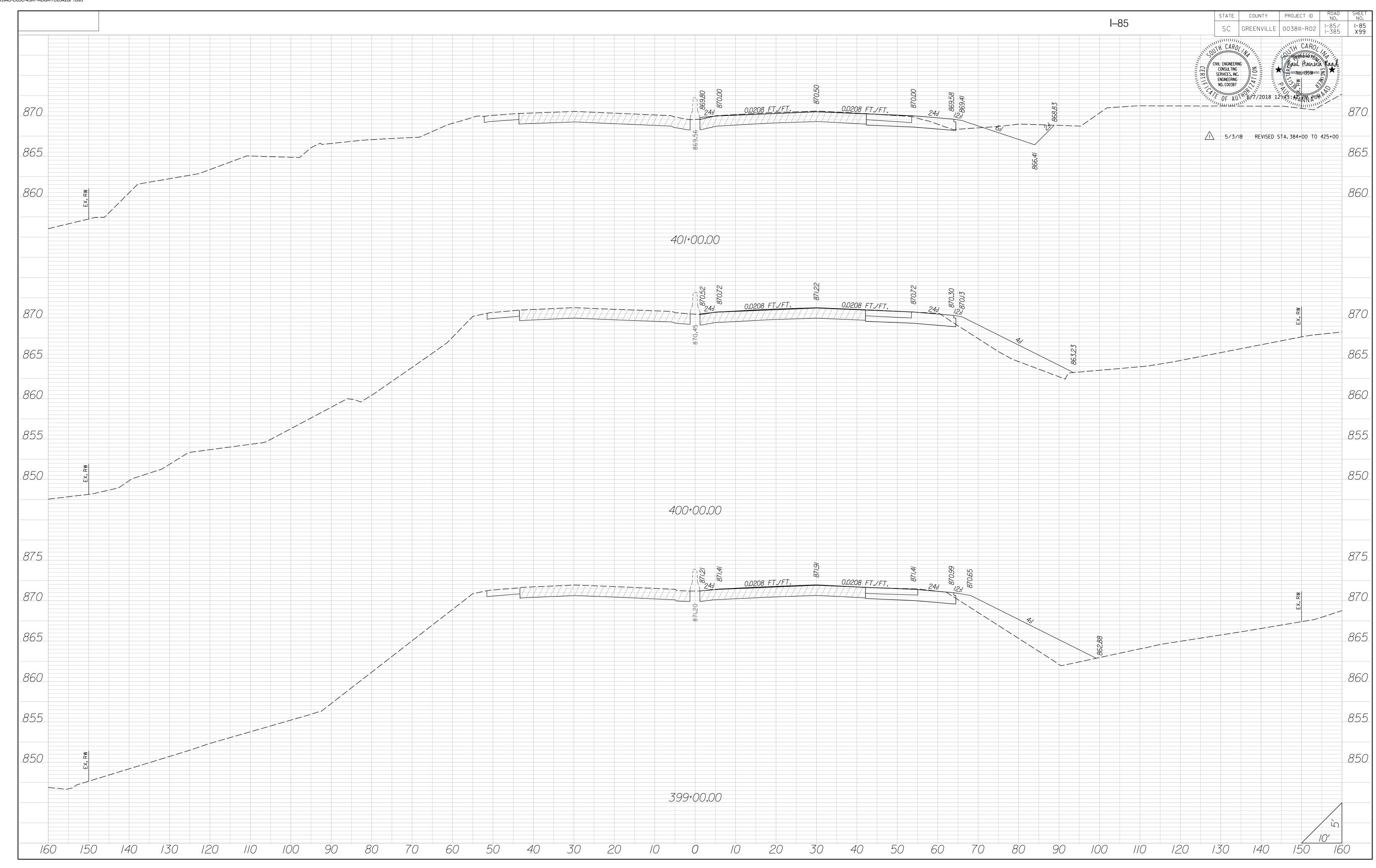


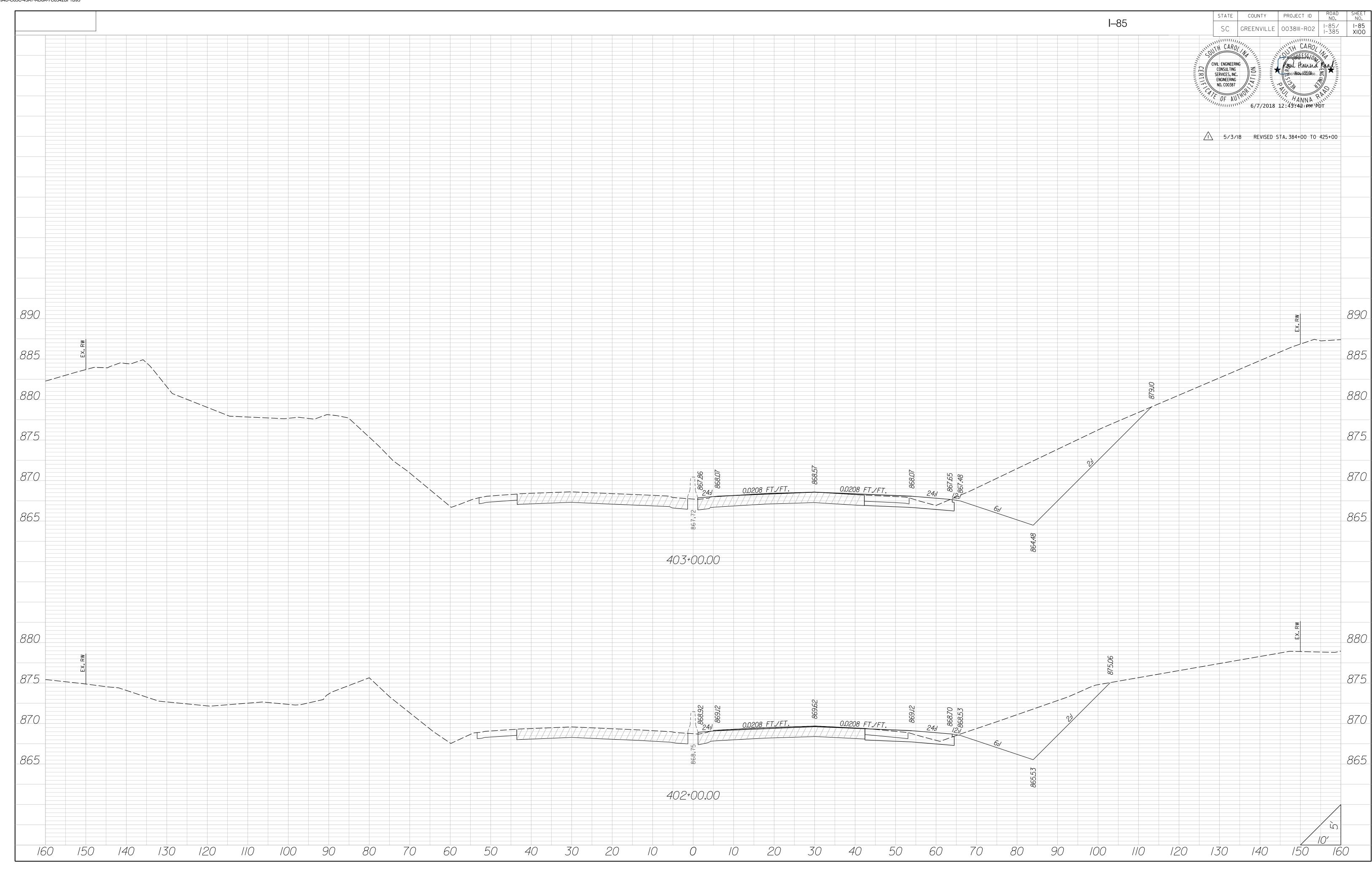


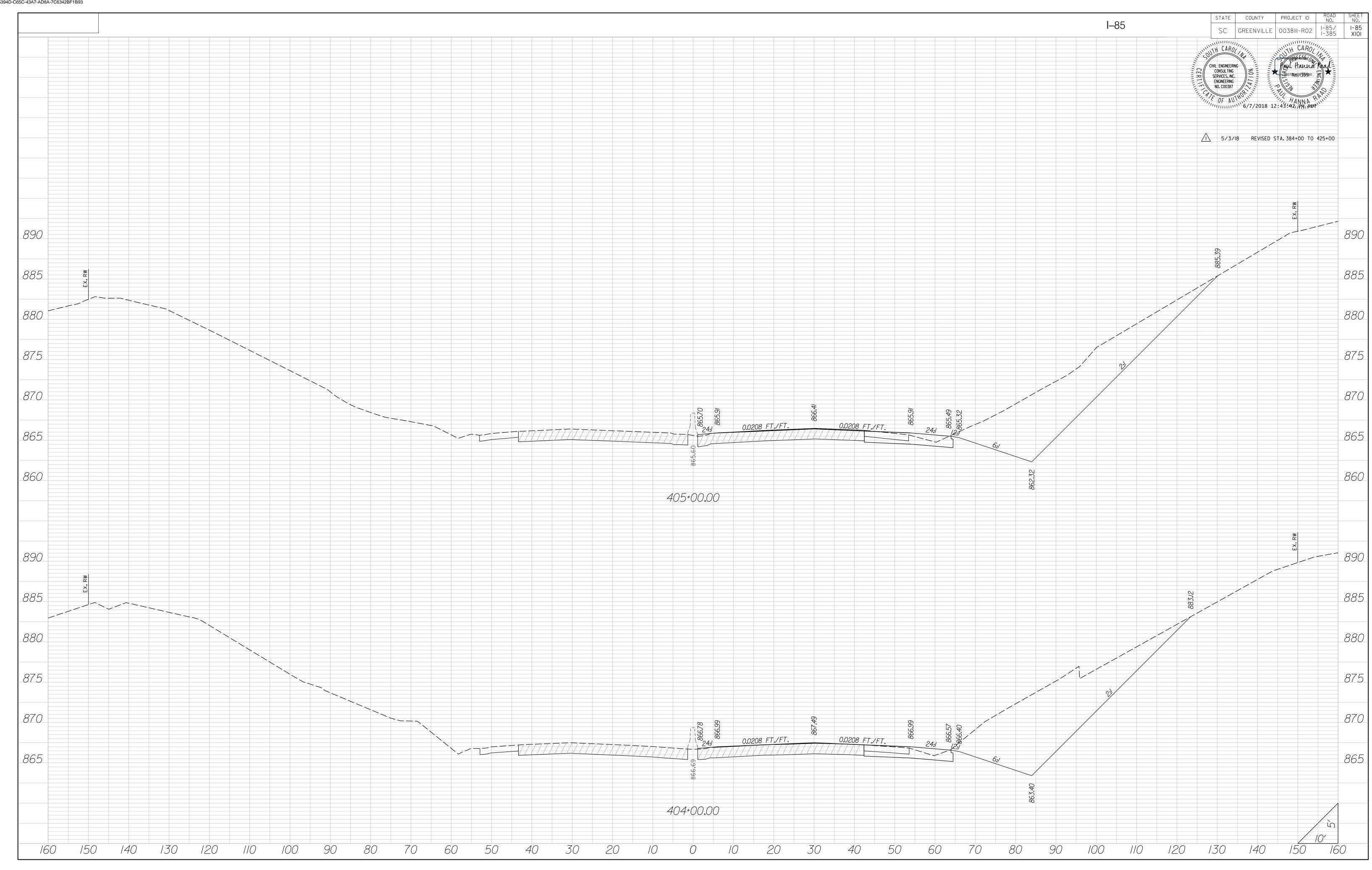


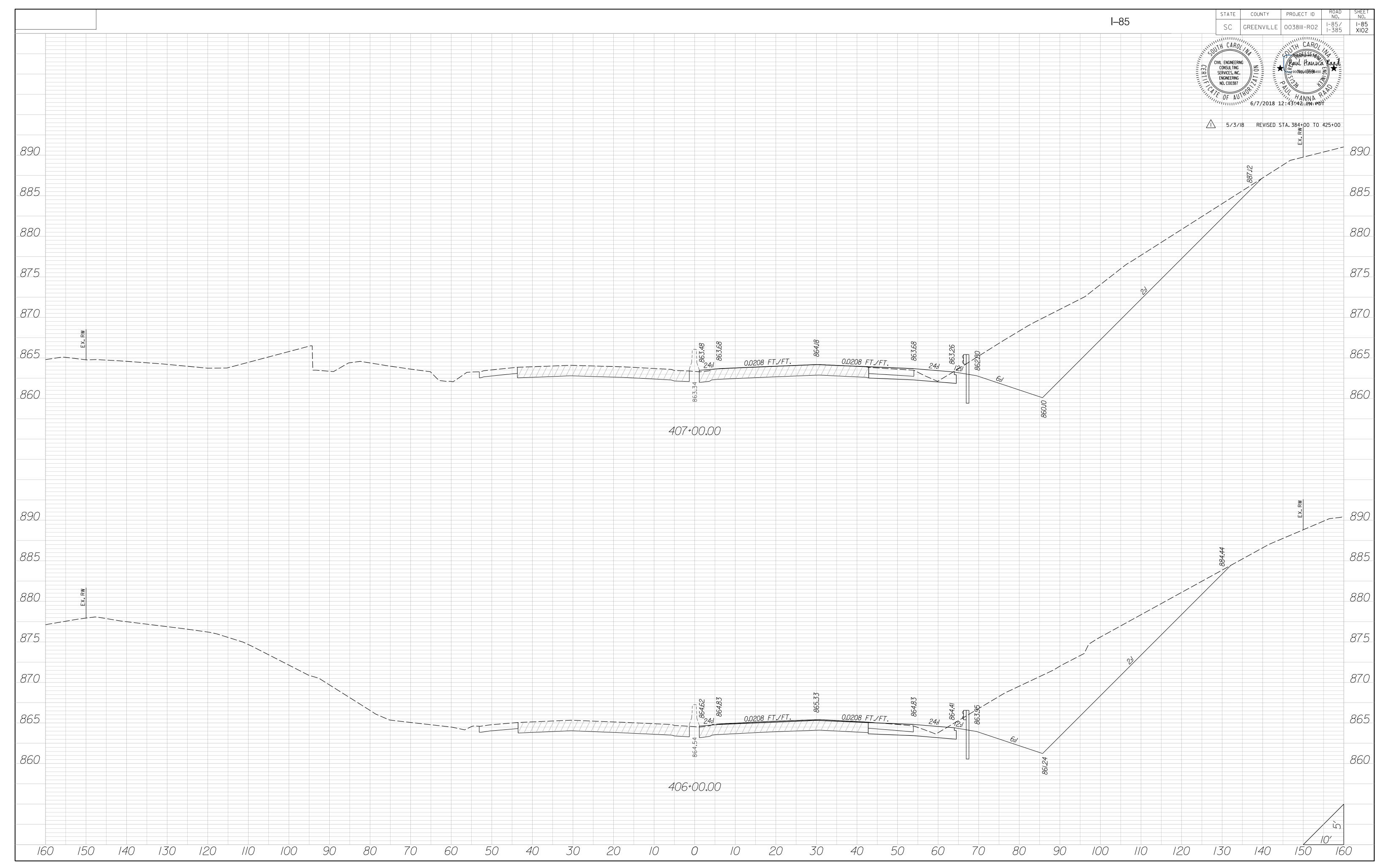


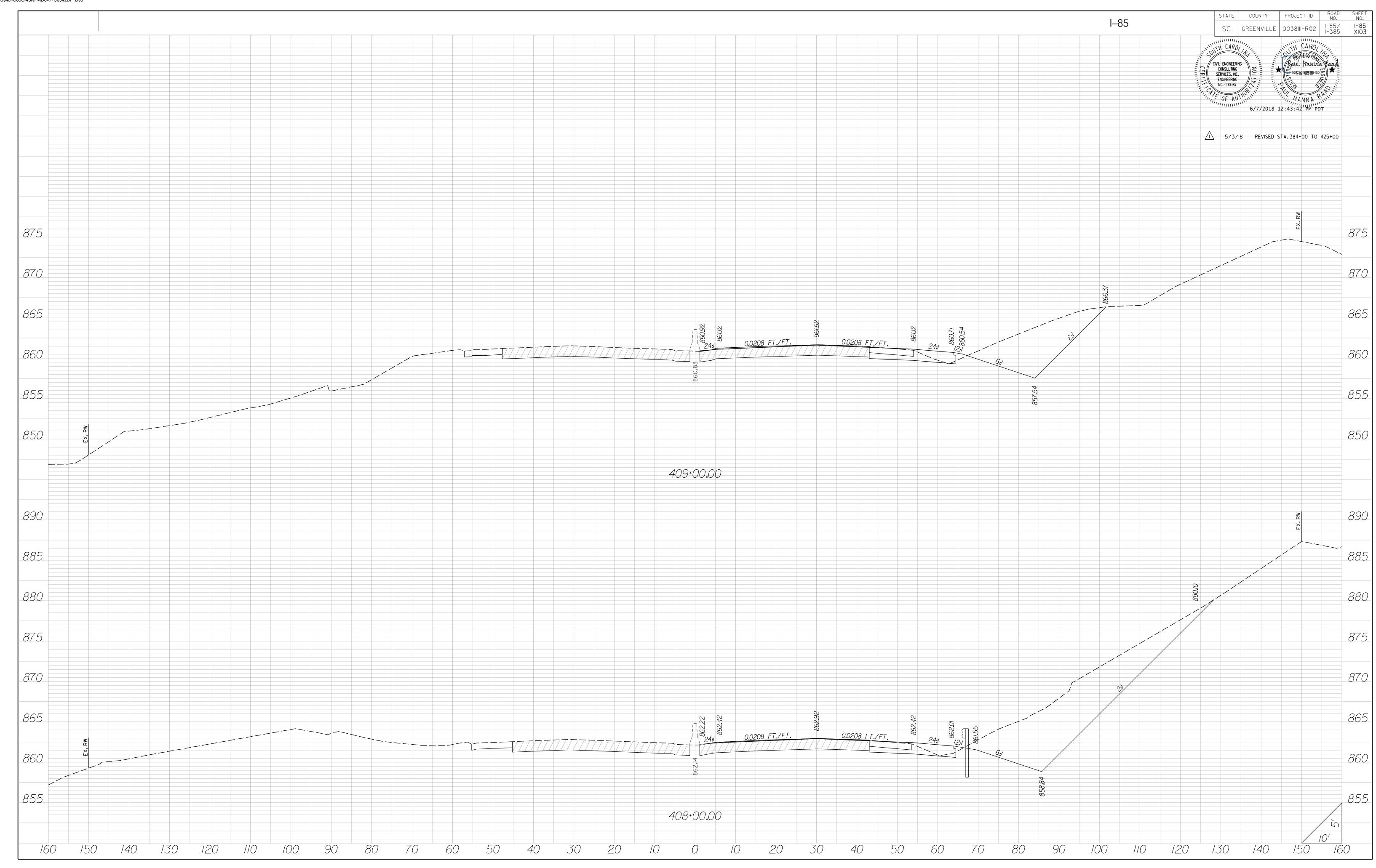


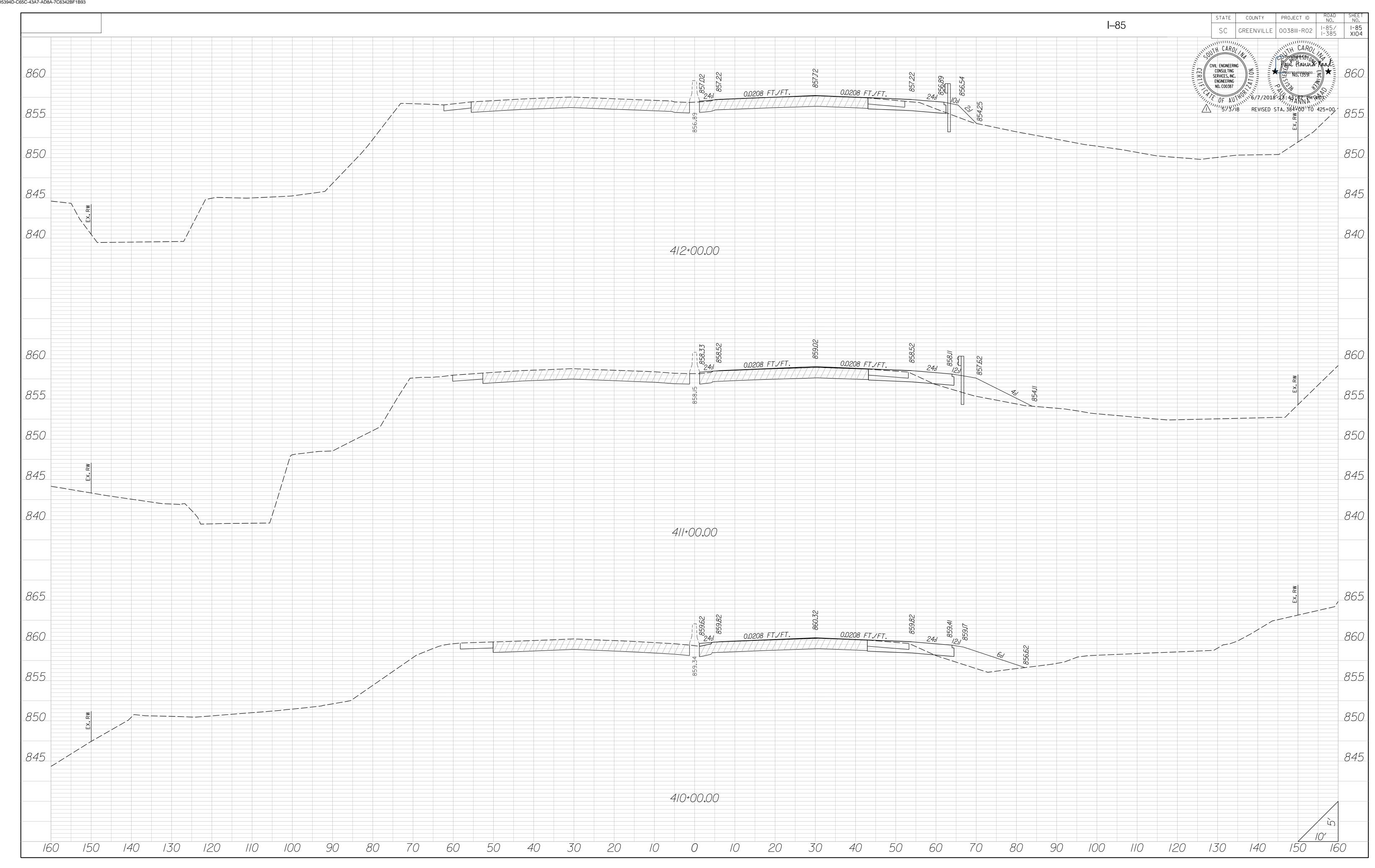


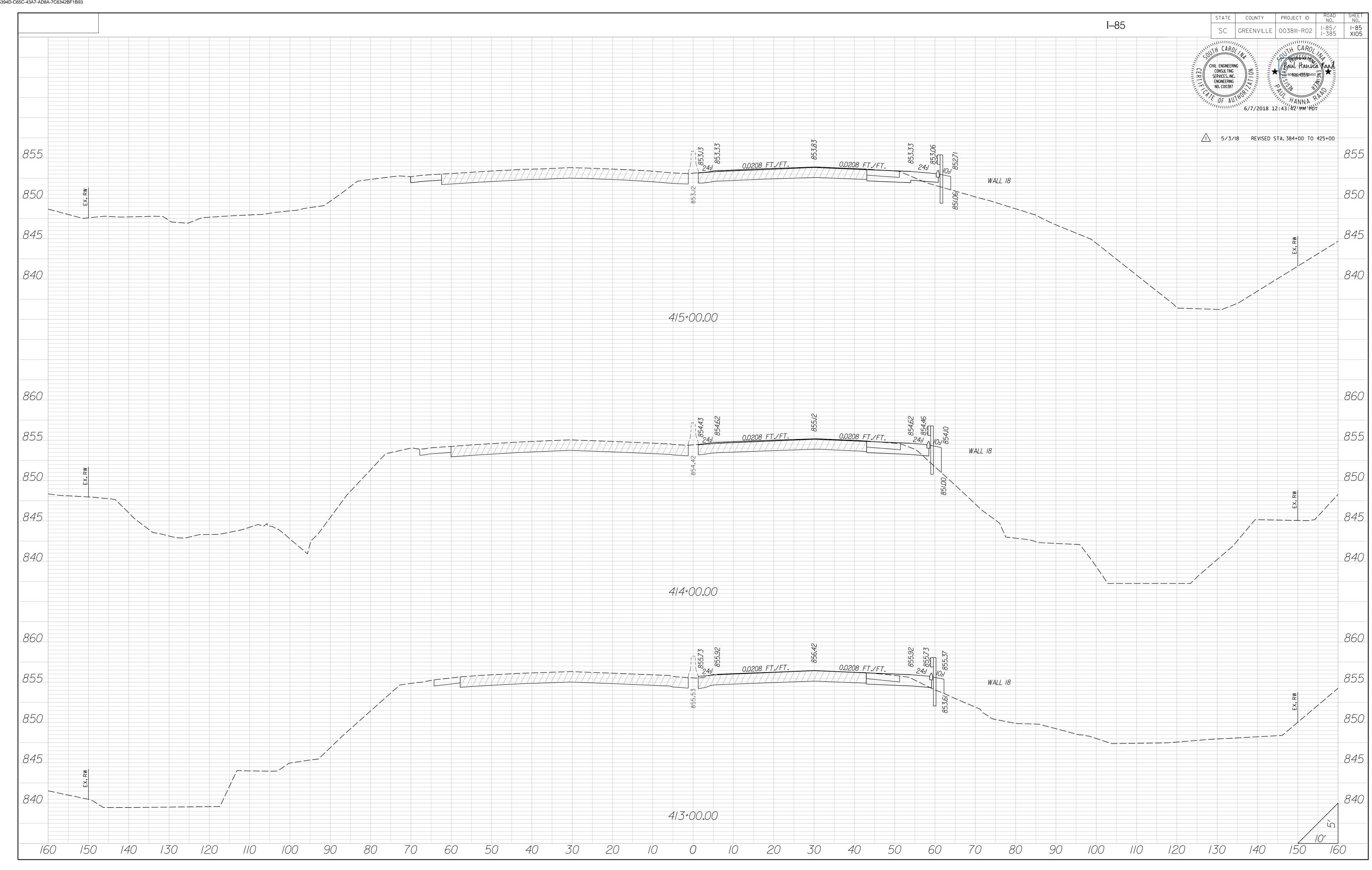


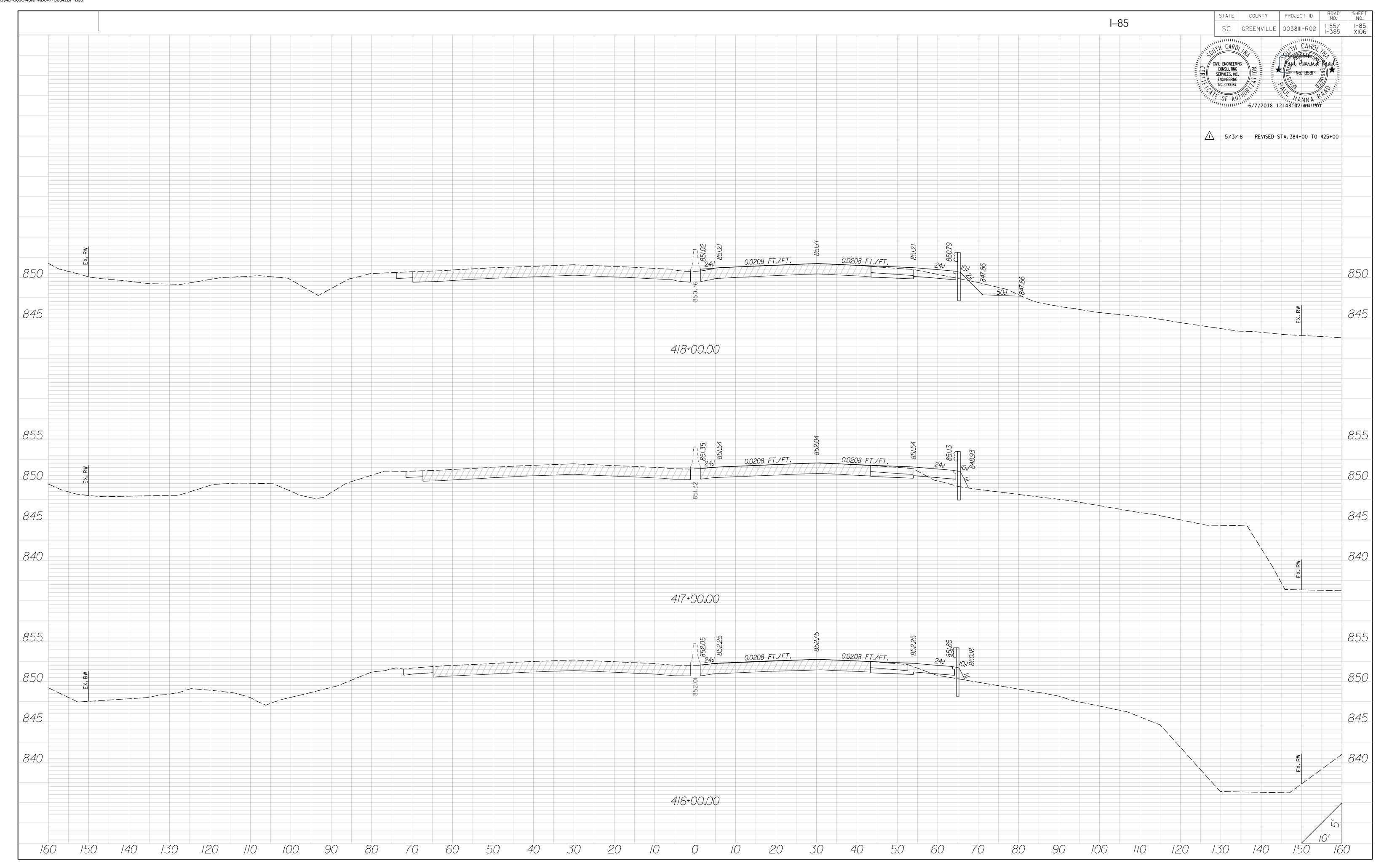


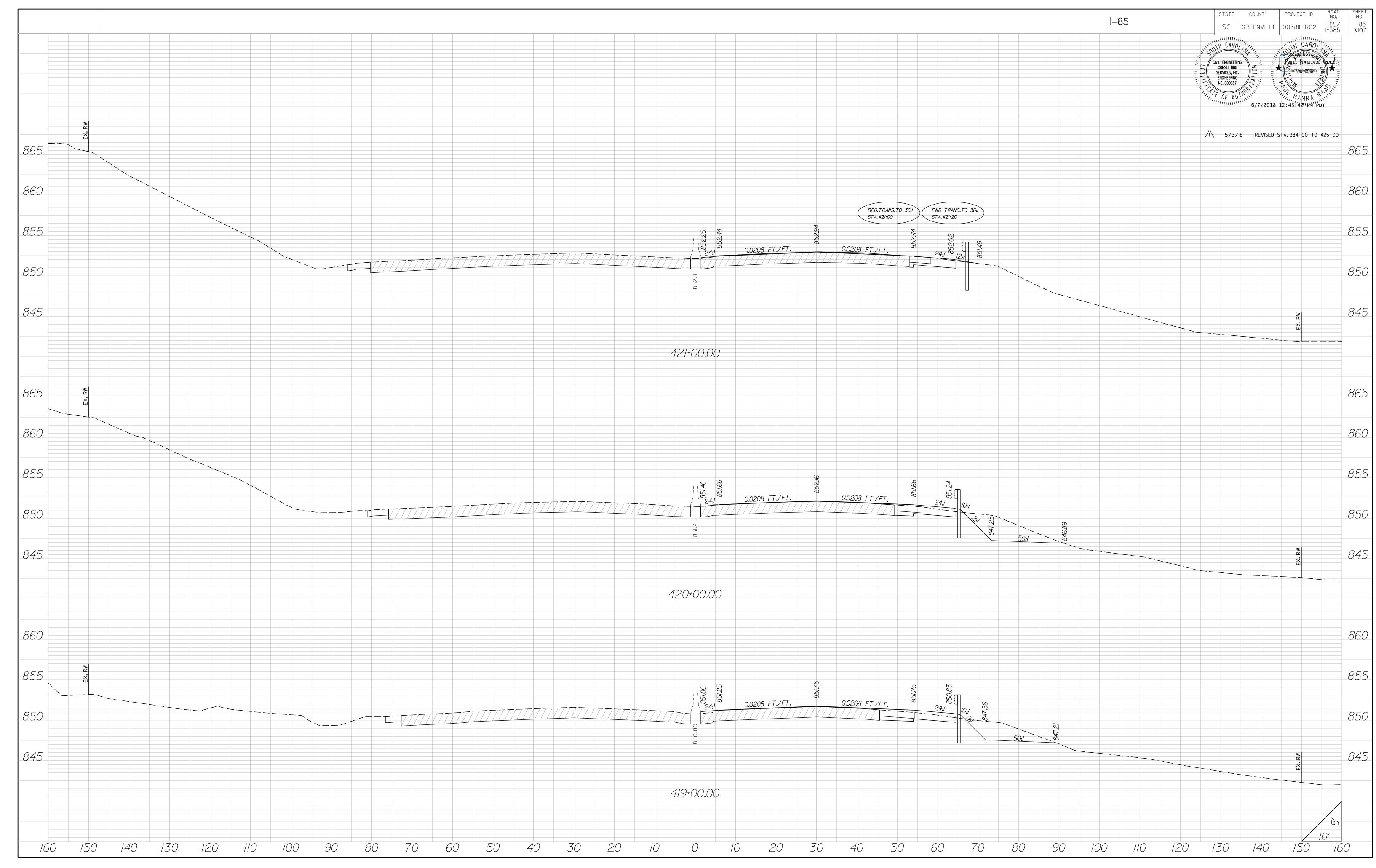


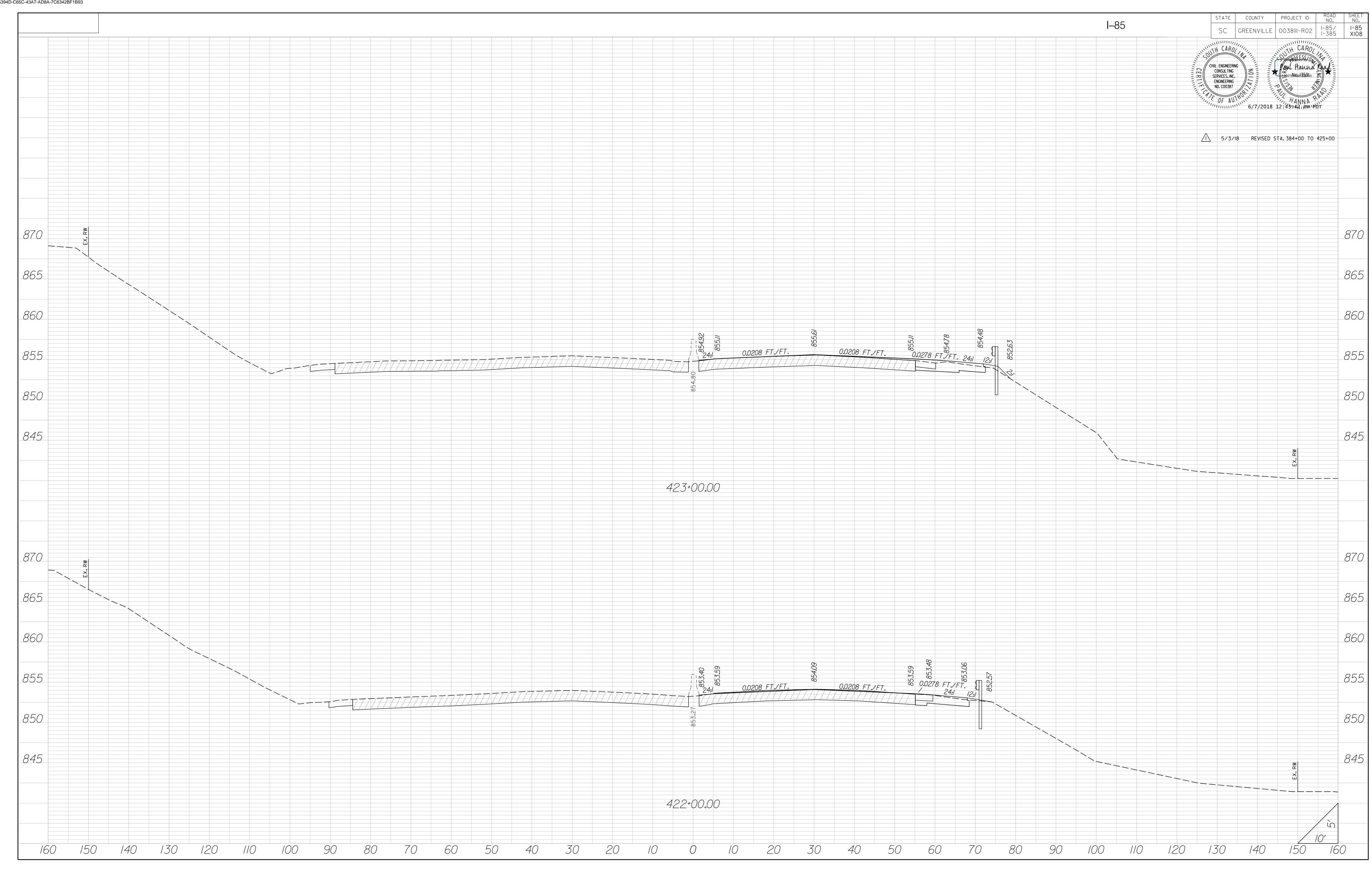


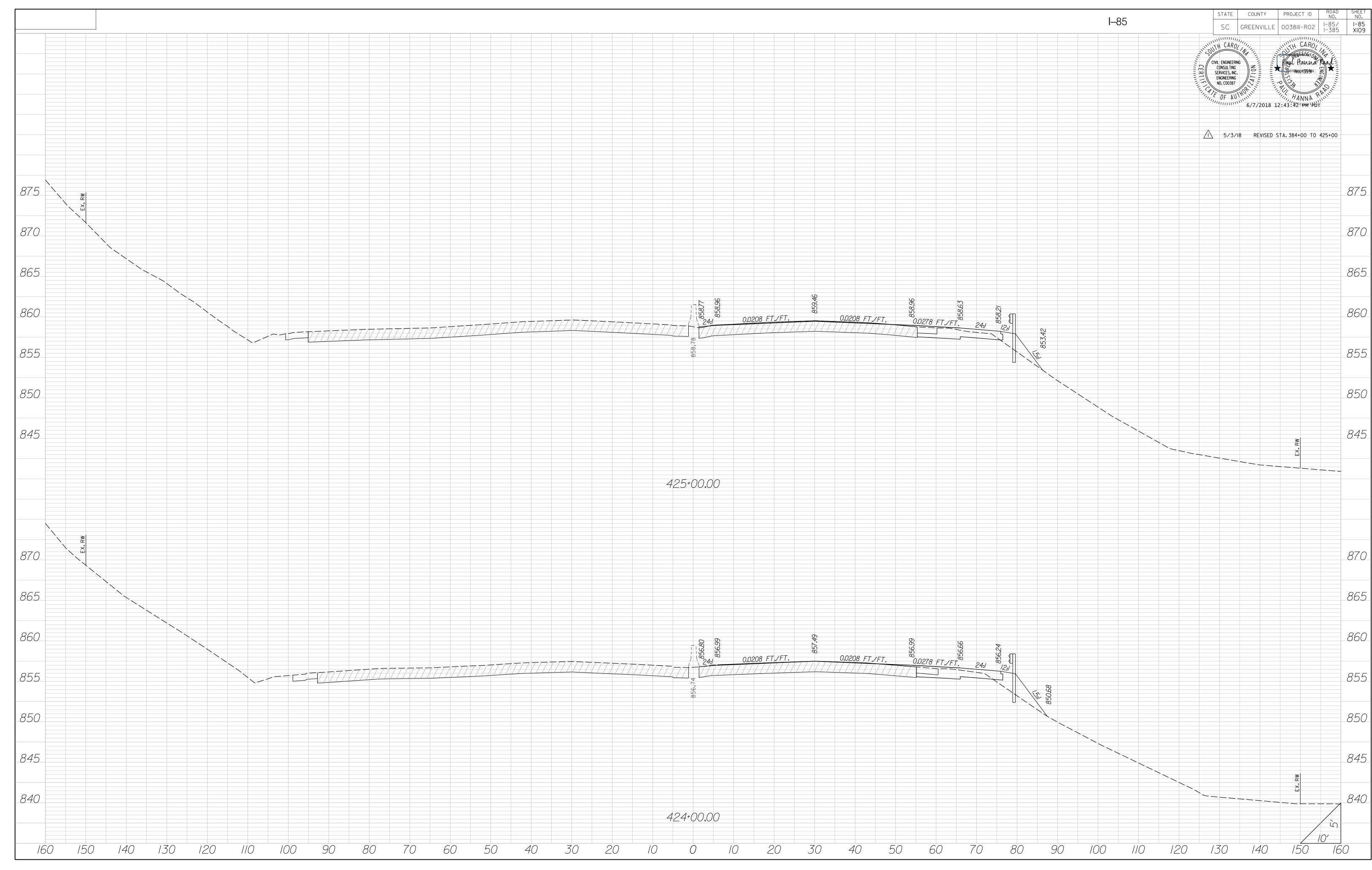












NC Registered Engineering Firm F-1078 NC Registered Geologists Firm C-406 SC Registered Engineering Firm 3241

May 22, 2018

Mr. Maher Almassri Civil Engineering Consulting Services, Inc. 2000 Park Street – Suite 201 Columbia, SC 29201

Re: Interstate 85/385 Interchange Improvements

Rocky Mountain Creek Retaining Wall 18

Greenville County, SC ECS Project No. 08-9283-B6

Dear Mr. Almassri:

As you are aware, ECS Southeast provided Mechanically Stabilized Earth (MSE) Wall recommendations as part of the Final Roadway Geotechnical Engineering Report titled Rocky Mountain Creek Roadway and Retaining Walls, dated October 25, 2016. It is our understanding that since the completion of the report, revisions were made to the retaining walls. Walls 18B, 18C, and 55 have been removed from the project, and require no further analysis. Wall 18A has been revised and was renumbered to wall 18. The purpose of this letter is to provide supplementary geotechnical recommendations for wall 18.

Wall 18A previously consisted of a wire faced MSE wall from station 413+00 to 419+40 (640 feet long) ranging in height from 4.33 feet to 10.27 feet tall. We understand that the wall has been shortened to 200 feet long with an alignment from station 413+00 to 415+00. Wall heights have also been decreased to a range of 3.21 feet to 6.75 feet.

An external stability analysis was performed for Wall 18 at station 413+50 with a design height of 7 feet. The results of the analysis are summarized below in Tables 1.0 and 1.1.

Table 1.0 – MSE Wall External Stability Analysis Results									
	Minimum Calculated Resistance Factor Max. Factored								
Wall Number	Design Height, H, ft ¹			Sliding ³	Bearing Resistance, psf				
18	3 < H ≤ 7	12.5 (1.79H)	0.23	0.47	5,400				

Table 1.1 – MSE Wall External Stability Analysis Results (Extreme Event 1)								
		Minimum Calculated Resistance Factor						
Wall Number	Design Height, H, ft ¹	Reinforcement Length, B _{req} , ft (%H)	Bearing Capacity ²	Sliding ³	Max. Factored Bearing Resistance, psf			
18	3 < H ≤ 7	12.5 (1.79H)	0.17	0.52	8,400			

Notes:

- 1. Height analyzed is measured from PGL to embedment depth.
- 2. Maximum Resistance factor is 0.65 for Static Bearing Capacity and 1.0 for Seismic Bearing Capacity.
- 3. Maximum resistance factor is 1.0 for sliding.

Static and extreme limit state global stability was also evaluated for Wall 18 at station 414+00. Extreme limit state (seismic) considers a pseudo-static horizontal acceleration (kh) of 0.20. Results are summarized below in Tables 1.2 and 1.3.

Table 1.2 – Static Global Stability Analysis								
		Loading	Dema	D/C	Performance			
Wall Number	Direction	Condition	Morganstern- Price	Bishop	Spencer	Criteria Met		
Wall 18 I-85 Station	Transverse	ESA	0.61	0.61	0.61	Yes		
413+50	Transverse	TSA	0.41	0.41	0.41	Yes		

Table 1.3 – Extreme Limit State Global Stability Analysis								
			Dem	Performance				
Wall Number	Direction	k _h	Morganstern- Price	Bishop	Spencer	Criteria Met		
Wall 18 I-85 Station 413+50	Transverse	0.20	0.61	0.62	0.61	Yes		

Revisions to the Geotechnical Notes on Plans have been made to reflect the changes to walls 18 and 55, and are provided in attached Roadway Notes on Plans. As shown in the attached analysis, the proposed wall 18 meets the SCDOT GDM performance requirements.

If you have any questions concerning the MSE Wall recommendations, please do not hesitate to contact us.

Respectfully,

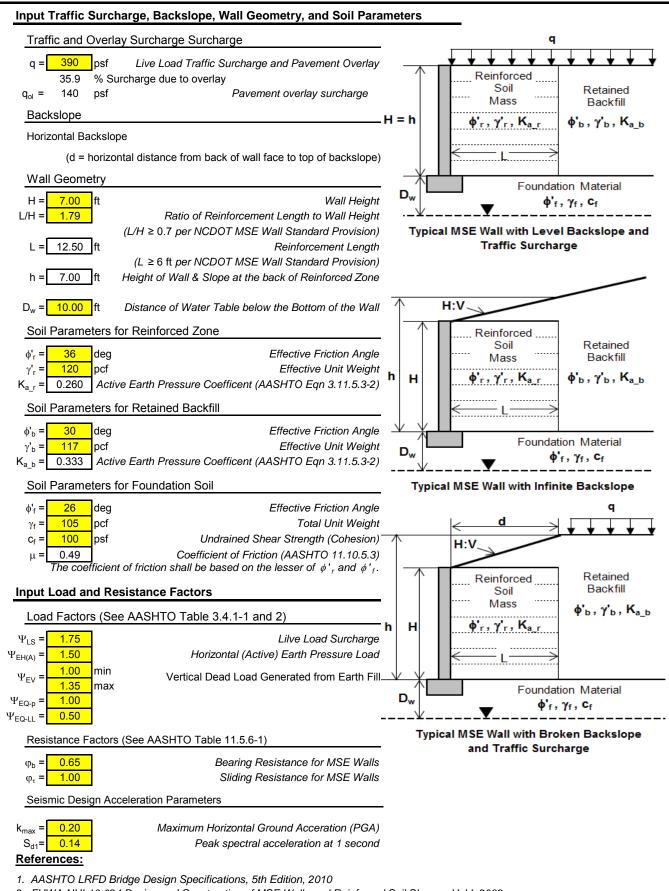
Attachments:

ECS SOUTHEAST, LLP

Jacob E. Erickson, E.I. Geotechnical Staff Project Manager

MSE External Stability Results

MSE Global Stability Results Geotechnical Notes on Plans Marc F. Plotkin, P.E., D.GE Principal Engineer SC Registration No. 30565

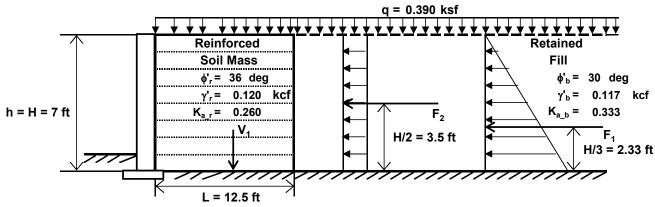


STATE OF NORTH CAROLINA

TIP NO.: COUNTY: SUBJECT: LRFD External Stability Analysis for MSE Walls I-85 Wall 18 JEE PREPARED BY: DATE: 05/22/18 STATION: 413+50

DEPARTMENT OF TRANSPORTATION GEOTECHNICAL ENGINEERING UNIT 1589 MAIL SERVICE CENTER STR. NO.: CHECKED BY: DATE: SHEET: OF

- 2. FHWA-NHI-10-024 Design and Construction of MSE Walls and Reinforced Soil Slopes Vol I, 2009
- 3. SCDOT Geotechnical Design Manual version 1.1, 2010



WBS NO.: TIP NO.: COUNTY: SUBJECT: LRFD External Stability Analysis for MSE Walls I-85 Wall 18 413+50

PREPARED BY: JEE DATE: 05/22/18 STATION:

CHECKED BY: DATE: STR. NO.:

Calculate Forces acting on Wall

External Stability for MSE Walls: Earth Pressure - Level Backslope with Surcharge Case (Based on FHWA Figure 4-2 and AASHTO Figure 11.10.5.2-1) All Forces are Calculated per Unit Length of Wall **Figure Not Drawn to Scale**

Forces from Vertical Earth Loads

 V_1 = Total Vertical Force from the Reinforced Soil Mass = $(\gamma'_r)(H)(L)$

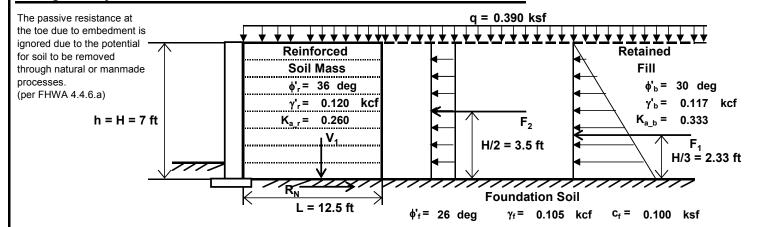
= (0.120 kcf)(7.00 ft)(12.50 ft) = 10.500 kips

Forces from Lateral Earth Pressure

 F_1 = Total Force Generated from Lateral Earth Pressure = $0.5(\gamma'_b)(H^2)(K_{ab})$

= $(0.5)(0.117 \text{ kcf})(7.00 \text{ ft})^2(0.333)$ = 0.955 kips

FHWA Eqn. 4-5


SHEET: 2 OF 8

Horizontal Force from Traffic Surcharge

 F_2 = Force Generated from Traffic Surcharge = $(q)(H)(K_{ab})$

= (0.390 ksf)(7.00 ft)(0.333) =0.909 kips FHWA Eqn. 4-6

Sliding Stability - AASHTO 11.10.5.3, AASHTO 10.6.3.4, and FHWA 4.4.6.a

External Stability for MSE Walls: Sliding Stability - Level Backslope with Surcharge Case (Based on FHWA Figure 4-2 and AASHTO Figure 11.10.5.2-1) All Forces are Calculated per Unit Length of Wall **Figure Not Drawn to Scale**

Calculate Factored Sliding Resistance (R_R)

 $R_R = \phi R_N = \phi_\tau R_\tau$ AASHTO Eqn. 10.6.3.4-1

WBS NO.:	.: TIP NO.: COUNTY:							
SUBJECT:	LRFD External Stability Analysis for MSE Walls							
	I-85 Wall 18							
PREPARED BY: JEE DATE: 05/22/18 STATION: 413+50								
CHECKED BY:	DATE:	STR. NO.:	SHEET: 3 OF 8					

Sliding Stability Continued - AASHTO 11.10.5.3, AASHTO 10.6.3.4, and FHWA 4.4.6.a

 φ_{τ} = Resistance Factor for Sliding = 1.00

AASHTO Table 11.5.6-1

R_r = Nominal Sliding Resistance between Reinforced Soil Mass and Foundation Soil

 $= \Psi_{EV}(V_1)\mu + (c_f)(L)$

FHWA Eqn. 4-12 and AASHTO 10.6.3.4

 Ψ_{EV} = Load Factor for Dead Load of Earth Fill = 1.00

AASHTO Table 3.4.1-1

(Use the Min Value of $\Psi_{\rm EV}$ per FHWA 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5)

V₁ = Total Vertical Force from the Reinforced Soil Mass =

 μ = Coefficent of Friction between Reinforced Soil Mass and Foundation Soil = 0.49

AASHTO 11.10.5.3

 c_f = Cohesion for Foundation Soil = 0.100 ksf

L = Reinforcement Length = 12.50 ft

 $R_r = (1.00)(10.50 \text{ kips})(0.49) + (0.100 \text{ ksf})(12.50 \text{ ft}) = 6.40 \text{ kips}$

 $R_R = (1.00)(6.40 \text{ kips}) = 6.40 \text{ kips}$

Calculate Factored Horizontal Driving Force (Pd)

 $P_d = (\Psi_{EHA})(F_1) + (\Psi_{LS})(F_2)$

FHWA Eqn. 4-9

 Ψ_{EHA} = Load Factor for Horizontal (Active) Earth Pressure =

AASHTO Table 3.4.1-1

F₁ = Force Generated from Lateral Earth Pressure =

FHWA Egn. 4-5

 Ψ_{LS} = Load Factor for Horizontal (Active) Earth Pressure =

AASHTO Table 3.4.1-1

F₂ = Force Generated from Traffic Surcharge =

0.909 kips

1.50

0.955 kips

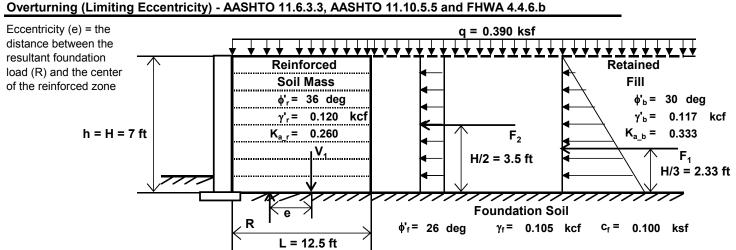
1.75

 $P_d = (1.50)(0.955 \text{ kips}) + (1.75)(0.909 \text{ kips}) =$

FHWA Eqn. 4-6

Check Sliding

Calculated Resistance Factor


3.023 kips

 $P_d/(Rr/\varphi_t) = 0.47$

 $\mathbf{R}_{\mathbf{R}}$ must be greater than or equal to $\mathbf{P}_{\mathbf{d}}$

6.395 kips ≥ 3.023 kips

OK

External Stability for MSE Walls: Overturning - Level Backslope with Surcharge Case (Based on FHWA Figure 4-7 and AASHTO Figure 11.10.5.2-1)

Figure Not Drawn to Scale - All Forces are Calculated per Unit Length of Wall Figure Not Drawn to Scale

Calculate Eccentricity (e)

$$e = \frac{\Psi_{EHA}F_1(H/3) + \Psi_{LS}F_2(H/2)}{\Psi_{EV}V_1}$$

FHWA Eqn. 4-15

WBS NO.:	TIP NO.:	COUN	TY:		
SUBJECT:	LRFD External Stability Analysis for MSE Walls				
I-85 Wall 18					
PREPARED BY: JE	E DATE: 05/22/18	STATION:	413+50		
CHECKED BY:	DATE:	STR. NO.:	SHEET: 4 OF	8	

Overturning (Limiting Eccentricity) Continued - AASHTO 11.6.3.3, AASHTO 11.10.5.5 and FHWA 4.4.6.b

 Ψ_{EHA} = Load Factor for Horizontal (Active) Earth Pressure = 1.50

 Ψ_{EV} = Load Factor for Dead Load of Earth Fill = 1.00

(Use the Min Value of $\Psi_{\rm EV}$ per FHWA 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5)

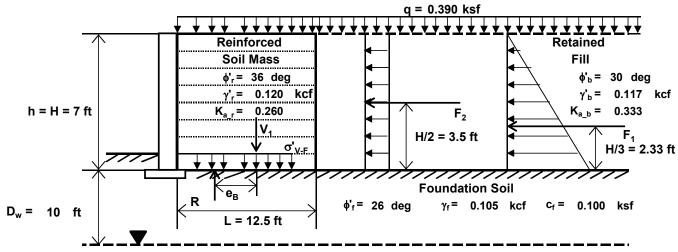
 Ψ_{LS} = Load Factor for Surcharge = 1.75

 F_1 = Force Generated from Lateral Earth Pressure = 0.955 kips

 F_2 = Force Generated from Traffic Surcharge = 0.909 kips

V₁ = Total Vertical Force from the Reinforced Soil Mass = 10.500 kips

H = MSE Wall Height = 7.00 ft


 $e = \frac{(1.50)(0.955 \text{ kips})(2.33 \text{ ft}) + (1.75)(0.909 \text{ kips})(3.50 \text{ ft})}{(1.00)(10.500 \text{ kips})}$

= 0.85 ft

Check Eccentricity

e must be less than or equal to L/4 per AASHTO 11.6.3.3 0.85 ft \leq 3.13 ft OK

Bearing Resistance (General Shear) - AASHTO 11.10.5.4, AASHTO 10.6.3.1, and FHWA 4.4.6.c

External Stability for MSE Walls: Bearing Resistance - Level Backslope with Surcharge Case
(Based on FHWA Figure 4-7 and AASHTO Figure 11.10.5.2-1)

All Forces are Calculated per Unit Length of Wall
Figure Not Drawn to Scale

Calculate Eccentricity for Bearing, (e_B)

$$e_{B} = \frac{\Psi_{EHA}F_{1}(H/3) + \Psi_{LS}F_{2}(H/2)}{\Psi_{EV}V_{1} + \Psi_{LS}qL}$$
 FHWA Eqn. 4-19

 Ψ_{EHA} = Load Factor for Horizontal (Active) Earth Pressure = 1.50 AASHTO Table 3.4.1-1

 Ψ_{EV} = Load Factor for Dead Load of Earth Fill = 1.35 AASHTO Table 3.4.1-1 and FHWA 4.4.6.a

(Use the Max Value of Ψ_{EV} per FHWA 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5)

 Ψ_{LS} = Load Factor for Surcharge = 1.75 AASHTO Table 3.4.1-1

 F_1 = Force Generated from Lateral Earth Pressure = 0.955 kips FHWA Eqn. 4-5 F_2 = Force Generated from Traffic Surcharge = 0.909 kips FHWA Eqn. 4-6

 V_1 = Total Vertical Force from the Reinforced Soil Mass = 10.500 kips

WBS NO.:	TIP NO.:	COUN	TY:	
SUBJECT:	LRFD External Stability Analysis for MSE Walls			
I-85 Wall 18				
PREPARED BY: JEE	DATE: 05/22/18	STATION:	413+50	
CHECKED BY:	DATE:	STR. NO.:	SHEET: 5 OF 8	

AASHTO Eqn. 10.6.3.1.2a-1 AASHTO Eqn. 10.6.3.1.2a-1

AASHTO Table 10.6.3.1.2a-1

AASHTO Table 10.6.3.1.2a-1 AASHTO Table 10.6.3.1.2a-2

AASHTO Table 11.5.6-1

AASHTO Table 3.4.1-1

AASHTO Eqn. 10.6.3.1.2a-1

AASHTO C11.10.5.4

		_			
Daarina	Resistance Continued	/Canaral Chaar	\	A A CUTO A O C 2 A	
bearing	i Kesisiance Continued	(General Shear) - AASHTU TT.TU.S.4.	AASHTU 10.0.3.1.	. and Fova 4.4.6.C
	,	100	, , , , , , , , , , , , , , , , , , , ,		,

$$H = MSE Wall Height = 7.00 ft$$

$$e_{B} = \frac{(1.50)(0.955\text{kips})(2.33\text{ft}) + (1.75)(0.909\text{kips})(3.50\text{ft})}{(1.35)(10.5\text{kips}) + (1.75)(0.390\text{kips})(12.50\text{ft})}$$

$$= 0.39 \text{ ft}$$

Calculate Nominal Bearing Resistance, (qn)

$$q_n = c_f N_c + 0.5 \gamma B' N_{\gamma} C_{w_{\gamma}}$$

$$N_c$$
 = Bearing Capacity Factor (based on ϕ'_f) = 22.30

$$\gamma_f$$
 = Total Unit Weight for Foundation Soil = 0.105 kcf

B' = Effective Foundation Width =
$$L - 2e_B$$

$$N_{\gamma}$$
 = Bearing Capacity Factor (based on ϕ'_f) = 12.50

$$C_{w_{\gamma}}$$
 = Correction Factor to Account for Location of Groundwater Table = 0.8

$$q_n = (0.100 \text{ ksf})(22.30) + (0.5)(0.105 \text{ kcf})(11.72 \text{ ft})(12.50)(0.80)$$

Calculate Factored Bearing Resistance, (q_r)

$$q_r = \phi_b q_n$$
 AASHTO Eqn. 10.6.3.1.1-1

$$\phi_b$$
 = Resistance Factor for Bearing = $\frac{0.65}{q_n}$ = Nominal Bearing Resistance = $\frac{8.383}{q_n}$ ksf

$$q_r = (0.65)(8.383 \text{ ksf}) = 5.449 \text{ ksf}$$

Calculate Factored Vertical Bearing Pressure at the base, (q_{V-F})

$$\sigma_{V-F} = \frac{\Psi_{EV}V_1 + \Psi_{LS}qL}{1 - 2e}$$

$$\Psi_{\text{EV}}$$
 = Load Factor for Dead Load of Earth Fill = $\frac{1.35}{\text{USe the Max Value of } \Psi_{\text{EV}}}$ per FHWA 4.4.6.c, AASHTO C3.4.1, and AASHTO C11.5.5)

$$V_1$$
 = Total Vertical Force from the Reinforced Soil Mass = 10.500 kips

$$\Psi_{LS}$$
 = Load Factor for Surcharge = $\frac{1.75}{2.000}$

$$\sigma_{\text{V-F}} = \frac{(1.35)(10.50\text{ kips ft}\,) + (1.75)(0.390\text{ ksf}\,)(12.50\text{ ft}\,)}{12.50\text{ ft}\,-2(0.39\text{ ft}\,)}$$

Check Bearing

Calculated Resistance Factor

q_R must be greater than or equal to q_{V-F}

OK

 $\sigma_{V-F}/q_n =$ 0.23

WBS NO.:	TIP NO.:	COUN	TY:	
SUBJECT:	LRFD External Stability Analysis for MSE Walls			
I-85 Wall 18				
PREPARED BY: JEE	DATE: 05/22/18	STATION:	413+50	
CHECKED BY:	DATE:	STR. NO.:	SHEET: 6 OF 8	

Bearing Resistance (Local/Punching Shear) - AASHTO 11.10.5.4, AASHTO 10.6.3.1.2b, and FHWA 4.4.6.c

Local and Punching shear failure occurs in loose or compressible soils and in weak soils under slow (drained) loading. This mode of failure will only be considered for foundation material that is cohesive.

To prevent Local/Punching Shear on weak cohesive soils

 $(\gamma_r)(H) \le 3c_f$ FHWA Eqn. 4-24

 γ_r = Effective Unit Weight of Reinforced Soil Mass = 0.120 kcf

H = Height of MSE Wall = 7.00 ft

0.840 ksf > 0.300 ksf

c_f = Undrained Shear Strength (Cohesion) of Foundation Soil = 0.100 ksf

 $(0.120 \text{ kcf})(7.00 \text{ ft}) \le 3 (0.100 \text{ ksf})$

The foundation is subject to Local/Punching Shear. Check Reduced Bearing Resistance

Calculate Reduced Nominal Bearing Resistance, (qn)

 $q_n = c_f^* N_c + 0.5 \gamma B' N_{\gamma} C_{w\gamma}$ AASHTO Eqn. 10.6.3.1.2a-1

 c_{f}^{*} = Reduced Cohesion for Foundation Soil = $0.67c_{f}$

= 0.67 (0.100 ksf) = 0.067 ksf N_c = Bearing Capacity Factor (based on f^*_f) = 13.10

 N_c = Bearing Capacity Factor (based on f^*_f) = 13.10 AASHTO Table 10.6.3.1.2a-1

 γ = Effective Unit Weight for Foundation Soil = 0.105 ksf

B' = Effective Foundation Width = $L - 2e_B$

= 12.5 ft - 2 (0.39 ft) = 11.72 ft

 N_y = Bearing Capacity Factor (based on ϕ'^*_f) = 4.10

4.10 AASHTO Table 10.6.3.1.2a-1

AASHTO 10.6.3.1.2b-1

AASHTO C11.10.5.4

AASHTO 10.6.3.1.2b-2

AASHTO Table 11.5.6-1

 $C_{w_{\gamma}}$ = Correction Factor to Account for Location of Groundwater Table = 0.8 AASHTO Table 10.6.3.1.2a-2

 ϕ'^*_f = Reduced Friction Angle for Foundation Soil = $\tan^{-1}(0.67 \tan \phi'_f)$

 $= tan^{-1}[0.67 tan (26 deg)] = 18 deg$

 $q_n = (0.067 \text{ ksf})(13.10) + (0.5)(0.105 \text{ kcf})(12.50 \text{ ft})(14.10)(0.8)$

= 3.030 ksf

Calculate Reduced Factored Bearing Resistance, (g_r)

 $q_r = \phi_b q_n$ AASHTO Eqn. 10.6.3.1.1-1

φ_b = Resistance Factor for Bearing = 0.65

 q_n = Nominal Bearing Resistance = $\frac{3.030}{3.030}$ ksf AASHTO Eqn. 10.6.3.1.2a-1

 $q_r = (0.65)(3.030 \text{ ksf}) = 1.970 \text{ ksf}$

Check Bearing

q_R must be greater than or equal to q_{V-F} 1.97 ksf ≥ 1.937 ksf

ΟK

WBS NO.: ____ TIP NO.: COUNTY: SUBJECT: LRFD External Stability Analysis for MSE Walls I-85 Wall 18 PREPARED BY: JEE DATE: 05/22/18 STATION: 413+50 STR. NO.: CHECKED BY: DATE: SHEET: 7 OF 8

Seismic Stablity - SCDOT GDM Section 14.12

Calculate Wave Scattering Effects

Wave Scattering Coefficient, $\alpha_w = 1+0.01H((0.5\beta)-1<1.0$

SCDOT Equation 13-103

$$\alpha_{\rm w} = 0.9545$$

Ground Motion Index, $\beta = k_{max}/S_{d1} = 0.70$

SCDOT Equation 13-104

Average seismic horizontal coefficient due to wave scattering

$$k_h = \alpha_w * k_{max} = 0.2$$

SCDOT Equation 13-102

Calculate Seismic Active Earth Pressure Coefficinet (Mononobe -Kobe Method) SCDOT GDM Section 14.4.1

Seismic Active Earth Pressure Coefficient Reinforced Soils, K_{AEr} = 0.584

Seismic Active Earth Pressure Coefficient Retained, K_{AEb} = 0.678

$$K_{ao} = \frac{\cos^2(\phi - \Psi - \theta)}{\cos(\Psi)\cos^2(\theta)\cos(\delta + \theta + \Psi)} \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \Psi - \beta)}{\cos(\delta + \theta + \Psi)\cos(\beta - \theta)}}\right]^2$$
 Equation 14-2

Where,

unit weight of soil

= height of wall or effective height of wall (heff)

angle of internal friction of soil

Ψ tan⁻¹[k_h/(1-k_v)]

angle of friction between soil and wall

horizontal acceleration coefficient

vertical acceleration coefficient, typically set to zero.

backfill slope angle

angle of backface of the wall with the vertical

Reinforced Soil 36.0 deg

$$\varphi$$
 = 30.0 deg

Retained Soil

$$\Psi$$
 = 11.3 deg

$$\Psi$$
 = 11.3 deg

$$\theta = 0$$
 deg

$$\theta = 0 \deg$$

$$\delta = 0$$
 deg

$$\delta = 0.00 \text{ deg}$$

Calculate Inertial Wall Width, $B_{inertial} = \omega H$

coefficient,
$$\omega$$
 = 0.70

Calculate Active Earth Thrust Force,
$$P_{AE} = \gamma_p * 0.5 K_{AEr} * \gamma_p * H^2$$

GDM Eq. 14-40

Calculate Intertial Reinforced Soil Mass Force,
$$P_{IR} = \gamma_p^* k_{avg}^* B_{inertial}^* H_{wall}^* = 0.12 \text{ kips}$$

GDM Eq. 14-41

Dead Load Surcharge Force,
$$P_{DC}$$
 =

$$= 0.664 \text{ kips}$$

Total Seismic Driving Force,
$$F_H = 3.3$$
 kip Calculated Resistance Factor, $\varphi = F_H/R_t = 0.52$

calculated Resistance Factor,
$$\varphi = F_H/R_t = 1$$

WBS NO.:	TIP NO.:	COUN	TY:			
SUBJECT:	LRFD External Sta	bility Analysis for	MSE Walls			
I-85 Wall 18						
PREPARED BY: JEE DATE: 05/22/18 STATION: 413+50						
CHECKED BY:	DATE:	STR. NO.:	SHEET: 8 OF 8			

Calculate Eccentricity for Bearing, (e_B)

$$e_{B} = \frac{\Psi_{\text{EQ-P}} F_{1s}(H/2) + \Psi_{\text{EQ-LL}} F_{2s}(H/2)}{\Psi_{\text{EV}} V_{1} + \Psi_{\text{EQ-LL}} qL}$$

FHWA Eqn. 4-19

 Ψ_{EHAeq} = $\Psi_{\text{EQ-p}}$ = Load Factor for Horizontal (Active) Earth Pressure = 1.00

AASHTO Table 3.4.1-1

 Ψ_{EV} = Load Factor for Dead Load of Earth Fill = AASHTO Table 3.4.1-1 and FHWA 4.4.6.a 1.00

(Use the Min Value of $\Psi_{\rm EV}$ per FHWA 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5)

 $\Psi_{LSeq} = \Psi_{EQ-p} = Load Factor for Surcharge =$

2.725 kips

F_{1s} = Force Generated from Lateral Earth Pressure = F_{2s} = Force Generated from Traffic Surcharge = 0.593 kips FHWA Egn. 4-5 FHWA Eqn. 4-6

AASHTO Table 3.4.1-1

V₁ = Total Vertical Force from the Reinforced Soil Mass = 10.500 kips

FHWA Eqn. 4-19

q = Live Load Traffic Surcharge = 0.250

H = MSE Wall Height = 7.00 ft

L = Reinforcement Length = 12.50 ft

$$e_{B} = \frac{ (\ \ 1.00 \ \)(\ \ \ 2.725 \ \ kips \)(\ \ \ \ \ 3.50 \ \ ft \) + (\ \ \ \ 1.00 \ \)(\ \ \ 0.593 \ \ kips \)(\ \ 3.50 \ \ ft \) }{ (\ \ 1.00 \ \)(\ \ \ 10.50 \ \ ksf \)(\ \ 12.50 \ \ ft \) }$$

$$= 0.85 \text{ ft}$$

Calculate Factored Vertical Bearing Pressure at the base, (q_{V-F})

$$\sigma_{\text{V-F}} = \frac{\Psi_{\text{EQ-P}}V_1 + \Psi_{\text{EQ-LS}}qL}{L - 2e_B}$$

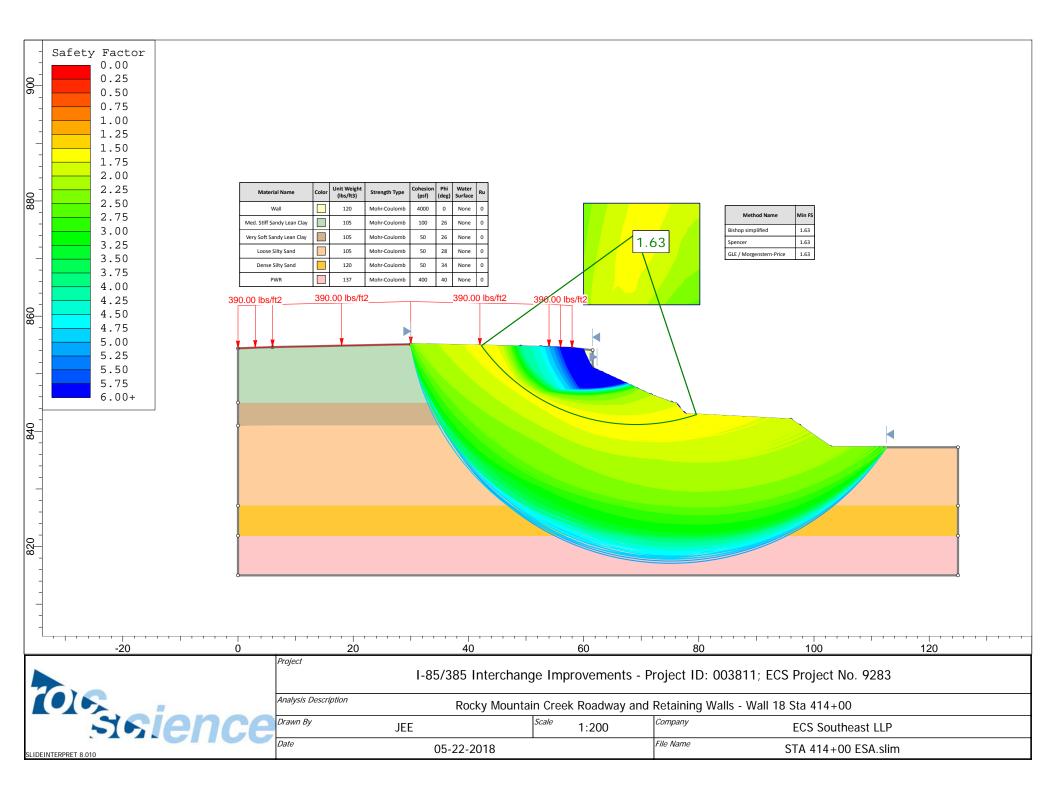
FHWA Eqn. 4-20

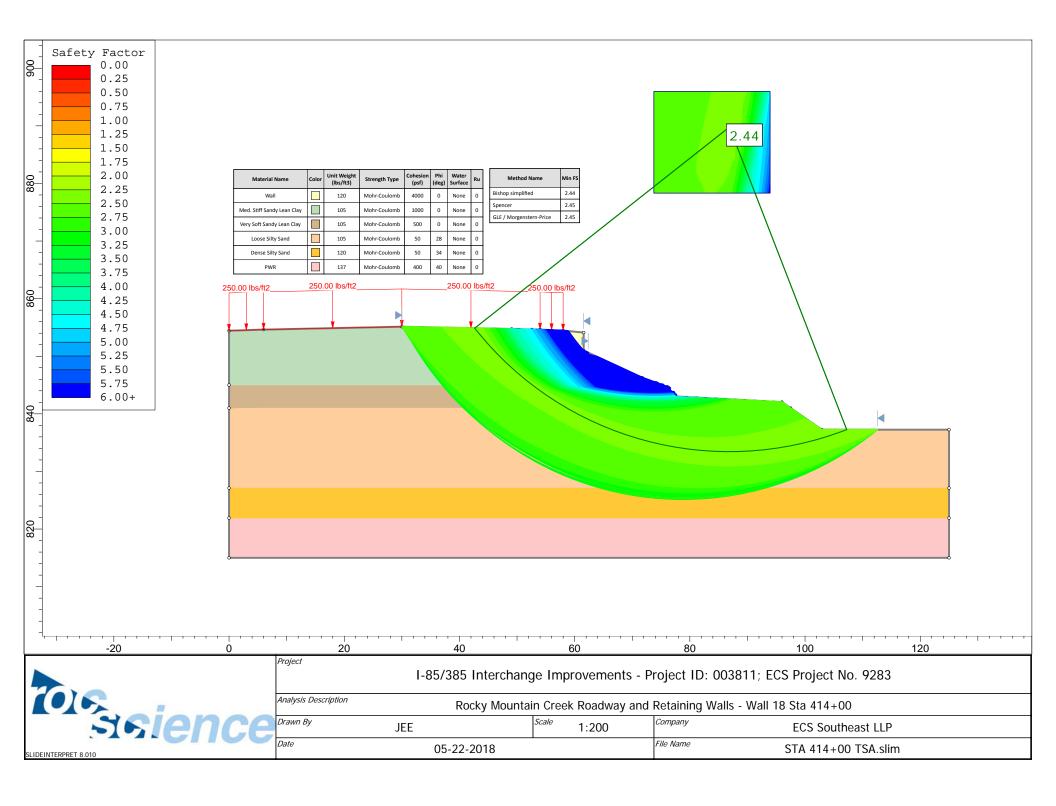
 $\Psi_{\text{EQ-p}}$ = Load Factor for Dead Load of Earth Fill =

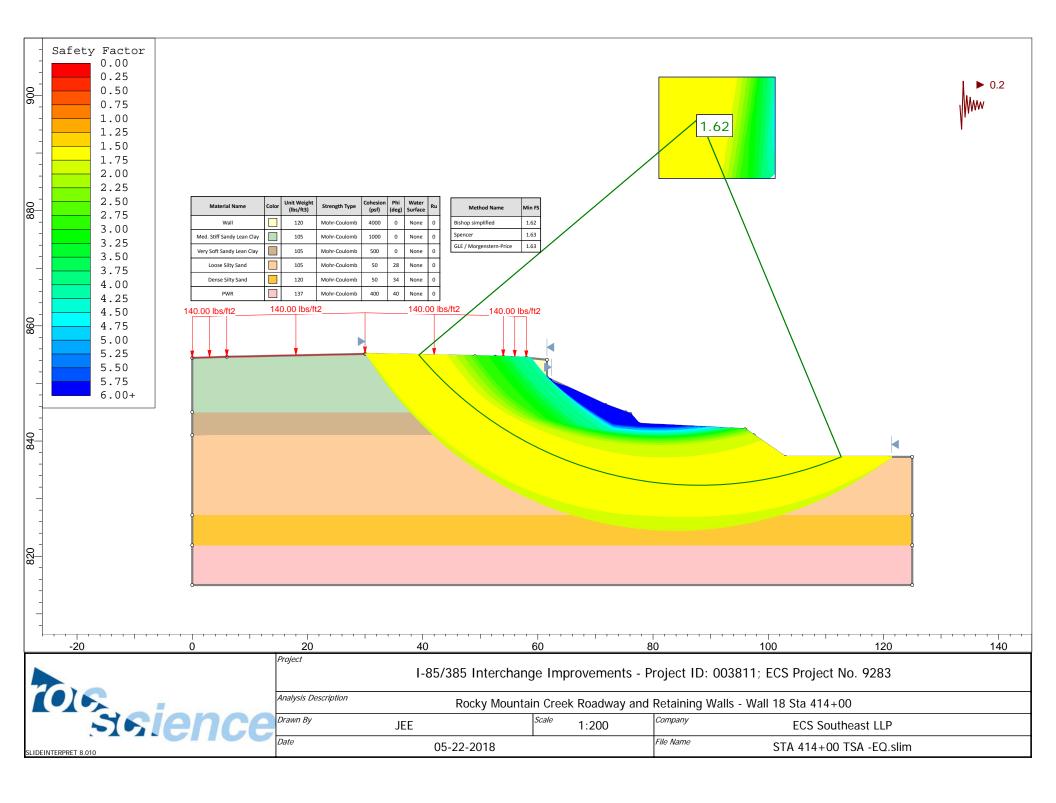
V₁ = Total Vertical Force from the Reinforced Soil Mass = 10.500 kips

 Ψ_{LSeq} = Ψ_{EQ-II} = Load Factor for Surcharge =

1.00 q = Live Load Traffic Surcharge = 0.250 ksf


12.50 ft L = Reinforcement Length =


e_B = Eccentricity for Bearing = 0.85 ft


$$\sigma_{V-F} = \frac{(1.00)(10.50 \text{ kips})(ft) + (1.00)(0.250 \text{ ksf})(12.50 \text{ ft})}{12.5 \text{ ft} - 2(0.85 \text{ ft})}$$

Calculated Resistance Factor

$$\sigma_{V-F}/q_{n} = 0.17$$

NOTES ON PLANS

The following notes apply to borrow materials:

Provide borrow materials meeting the following minimum requirements:

- A sandy material (35% or less passing 0.075 mm) with a minimum total soil unit weight, γ_{total} of 110 pcf, with a maximum dry density exceeding 100 pcf.
- Minimum friction angle, ϕ , of 30° and cohesion, c, of 50 psf for embankment fill, alternatively embankment fill may consist of a minimum friction angle (ϕ) of 34° with zero cohesion.
- No. 57 Stone backfill for Mechanically Stabilized Earth Walls

In addition, determine the moisture-density relationship and classification of the material. Test and submit the classification, moisture-density relationship, and soil strength parameters of the material to the Engineer for acceptance. An AASHTO certified laboratory is required to perform the testing. Contact the RPG Geotechnical Engineer for a list of locally available AASHTO certified laboratories. The Department may perform independent testing to assure quality.

Determine the friction angle and cohesion using either direct shear testing or consolidated-undrained triaxial shear testing with pore pressure measurements. Direct Shear testing shall only be performed on soils with a fines content of less than 25 percent. Classification testing includes grain-size distribution with wash #200 sieve, moisture plasticity testing and natural moisture content. Use the Standard Proctor test to determine the moisture-density relationship. Remold all samples used in shear strength testing to 95 percent of the Standard Proctor density. Conduct shear strength testing at the initial selection of the borrow pit, any subsequent changes in borrow pits, and for every 10,000 cy of materials placed. Perform classification testing for every 50,000 cy of materials placed, including the material used for the shear strength testing. Additional shear testing may be required if, in the opinion of the RCE, the materials being placed are different from those originally tested.

If these minimum criteria cannot be met, provide the soil parameters for the intended borrow excavation material for the project site to the Engineer for review and acceptance. After acceptable borrow material is obtained, compact the fill to the required finish grade line using the compactive effort indicated in the Standard Specifications for Highway Construction, Section 205 (Embankment Construction).

The following notes apply to muck excavation:

Any areas identified on the plans and any additional areas that are discovered to deflect or settle may require corrective action as directed by the RCE. This may include undercutting; placing No. 57 stone aggregate that is separated from other borrow materials by a geotextile for separation of sub-grade and sub-base, and/or additional compactive effort to the approval of the RCE.

In areas that require mucking or undercutting, borrow material soil may be placed as a bridge lift as long as the grade on which the material is being placed is at least 2 feet above ground water level. In the event that groundwater does not allow backfilling with a

Final Roadway Geotechnical Engineering Report Rocky Mountain Creek Roadway and Retaining Walls I-85/385 Interchange Improvements Greenville County, South Carolina

borrow material soil, use a No. 57 stone as the bridge lift material. Borrow material bridge lifts may not exceed a 2-foot thickness. The depth at which mucking or undercutting is required is dependent upon encountering a suitable bearing material within the excavation or if a predetermined elevation or depth is required. In most cases, do not undercut more than 3 to 5 feet. The RCE will determine the final mucking or undercutting thickness, unless otherwise specified in the project plans and/or specifications. If a suitable bearing soil is not encountered within this depth range, place a P1 biaxial geogrid with an aperture size of less than or equal to 1 inch and in accordance with the project special provisions beneath a 2-foot thick bridge lift of No. 57 stone. If additional compacted borrow material soil is needed to reach grade, place a geotextile for separation of sub-grade and sub-base between the No. 57 stone and the overlying compacted soil. A bridge lift consisting of borrow material soil may not be placed within 3 feet of the base of the pavement section. Place only compacted borrow material soil or No. 57 stone within this zone. Reference the Standard Specifications for Highway Construction, Earthwork Section, Division 200.

The following notes apply for MSE Wall Subgrades:

Prior to construction of the leveling pad and MSE fill, the RCE shall verify that the retaining wall is founded on subgrade materials possessing the minimum allowable bearing capacity noted on wall plan and elevation sheets. If the RCE determines that the subgrade is unacceptable for placement of MSE fill, the contractor shall undercut the subgrade to the limits directed by the RCE. Unacceptable subgrade materials include, but are not limited to, all high plasticity clays and elastic silts (CH, MH), low plasticity clays and silts (CL, ML) with an unconfined compressive strength less than 2,000 psf, and deleterious debris. Replacement of undercut material will be with Backfill Material, meeting requirements outlined in the SCDOT Standard Specifications for Highway Construction.

The foundation area for the MSE walls might have scattered pockets of soft soils that might be present at the surface or just below the surface for the base of the MSE fill. These soft pockets are only expected to extend a few feet below the base of the MSE fill. The quality assurance representative shall proofroll the subgrade in this area and/or conduct dynamic cone tests at regular intervals to determine that the subgrade meets the requirements of the paragraph above.

There are several locations along the roadway alignment where proposed drainage structures are situated in front of (i.e. parallel) MSE walls, or where new and existing draining structures pass beneath the MSE walls. Where new pipes are parallel to the proposed wall, the pipe should be installed prior to the proposed wall or the wall design should account for the temporary reduction in passive resistance. Where pipes pass beneath walls, the pipes should be designed to account for the increased loading associated with the wall backfill. We recommend the top of each pipe be situated a minimum of 1 foot below the bottom of retaining.

The following notes apply for settlement and displacement monitoring:

The contractor shall establish a monitoring program consisting of settlement instruments. The settlement monitoring program must include establishing settlement monitoring instruments on the subgrade soils prior to fill placement, and at design

Final Roadway Geotechnical Engineering Report Rocky Mountain Creek Roadway and Retaining Walls I-85/385 Interchange Improvements Greenville County, South Carolina

pavement subgrade elevation. Settlement monitoring instruments are required at a spacing of every 100 feet along MSE Walls and every 500 feet along embankments with new fill thicknesses exceeding 20 feet. Instruments shall be established at the centerline of road and edge of pavement. Settlement monitoring shall continue until three consecutive measurements demonstrate the rate of settlement is less than 0.1 inches per year. No more than one measurement shall be obtained on a single day.

A minimum of 2 measurements shall be obtained on monuments prior to fill placement, and instruments shall be measured weekly during fill placement. Instrumentation measurements shall be provided to the Geotechnical Engineer within 24 hours of measurements for interpretation. Interpreted results shall be provided to the RCE.

The following notes apply to slope construction:

Where the new fill meets the existing slope, the existing slope shall be benched to limit the potential for a preferential failure surface and to allow compaction at the interface. Benches shall have a minimum horizontal length of 8 feet and a vertical rise of no more than 3 feet. Fill slopes of 2H:1V or steeper shall be overbuilt (i.e. fill should temporarily extend beyond the final slope face) to allow compaction at the slope face. After compaction is complete, the slope may be regraded to the final inclination.

Should seeps or thick lenses of highly plastic soils be observed in the planned fill and cut slopes that are steeper than 2H:1V, ECS must be contacted to determine if the steeper slopes may be constructed as planned or if slope flattening or reinforcing is required. Similarly, if soft or wet ground conditions are observed at the base of planned fill embankments, the QA representative must determine the limits of undercutting required or required in-situ treatment.

The following Plan Notes apply to Mechanically Stabilized Earth walls:

Reinforced Backfill (Granular Fill or stone.)

Internal Friction Angle (deg) = 36
Total Unit Weight = 120 pcf
Surcharge Dead Load for Pavement Overlay = 140 psf
Active Earth Pressure Coefficient = 0.26

Retained Backfill

Internal Friction Angle (deg) = 30 Total Unit Weight = 117 pcf Active Earth Pressure Coefficient = 0.33 Final Roadway Geotechnical Engineering Report Rocky Mountain Creek Roadway and Retaining Walls I-85/385 Interchange Improvements Greenville County, South Carolina

Wall 17 – I-85 Station
Foundation Soils
Total – Internal Friction Angle (deg) = 26
Total – Cohesion = 0 psf
Effective – Internal Friction Angle (deg) = 26
Effective – Cohesion = 0 psf

Wall Height Min. Breq Factored Bearing (Static) Factored Bearing (Seismic) $0 < H \le 7.5$ 14.5 ft 2,000 psf 3,100 psf

Wall 18 – I-85 Station 413+00 to 415+00
Foundation Soils
Total – Internal Friction Angle (deg) = 0
Total – Cohesion = 1000 psf
Effective – Internal Friction Angle (deg) = 26
Effective – Cohesion = 100 psf

Wall Height Min. Breq Factored Bearing (Static) Factored Bearing (Seismic) 3 < H ≤ 7 12.5 ft 5,400 psf 8,400 psf

Stantec Consulting Services Inc.

4969 Centre Pointe Drive Suite 200, North Charleston SC 29418-6952

April 26, 2015 Revised April 26, 2015 Revised March 29, 2018

File: 171001537

Attention: Rocque Kneece CECS, Inc 2000 Part Street, Suite 201 Columbia SC, 29201

Dear Rocque,

Reference: I-85 / I-385 Interchange – FEMA No-Rise Study – SCDOT Review

Introduction

Stantec performed a FEMA No-Rise analysis for an approximately 5000 foot reach of Rocky Creek at Interstate 85 in Greenville, South Carolina. Per FEMA regulations (44 CFR 60.3(d)(3)), a No-Rise analysis must demonstrate a zero-increase (0.00 feet) in the base flood elevation (BFE), floodway elevations, or floodway widths through hydrologic and hydraulic analysis before land development occurs within a floodway. A No-Rise analysis was performed due to proposed interstate modifications within the effective floodway.

The No-Rise analysis utilized the effective FEMA hydraulic model (HEC-RAS version 4.0) which provided cross sections, surveyed structures, and hydrology (steady-state flow rates). Detailed design of the proposed conditions were provided to Stantec and then incorporated into the hydraulic model using HEC-RAS version 4.1. Water surface profiles were produced for the 2-, 10-, 25-, 50-, 100-, and 500-year storm events.

Effective Model

The Flood Insurance Rate Maps for Greenville County became effective in August 18, 2014, and the project area is located in FEMA Map Number 45045C0407E. The Rocky Creek hydraulic model is comprised of the main channel and 6 additional tributaries. There are 2 areas of interest for this No-Rise study. The first location is at the I-85 culvert bridge crossing, and the second location is approximately 2500 feet upstream of the culvert bridge where Rocky Creek meanders back towards I-85. This location was included into the study because of the close proximity between the 100-year floodplain, floodway, and proposed I-85 modifications.

Duplicate Effective Model

The duplicate effective model is a truncated reproduction of the effective model for the specific project area. The two areas of interest described above are located between cross sections 24541 and 28374. However, the actual project limits for the No-Rise analysis are extended to 3 additional upstream cross sections and 1 additional downstream cross section. The project limits

Design with community in mind

April 26, 2015 Rocque Kneece Page 2 of 5

Reference: I-85 / I-385 Interchange – FEMA No-Rise Study – SCDOT Review

for the No-Rise analysis are defined from cross section 24314 to 28944 as seen in the main channel of the hydraulic model. Boundary conditions for each water surface profile are known water surface elevations from the results of the original effective model. Results of the duplicate effective model come within 0.1 feet of the effective model.

Corrected Effective Model

A corrected effective model includes any significant corrections or errors to the effective model. For this study, no corrections or errors were discovered in the effective model.

Existing Conditions Model

The existing conditions model reflects any modifications or updated topography within the project area since the date of the effective model. Because the effective model was dated August 2014, no modifications or topography were incorporated into the model.

Proposed Conditions

Land development activity within the floodway includes I-85 road widening for portions of the north bound and south bound lanes. No modifications to the existing box culverts are proposed. All proposed modifications described in this report are within the 300 foot I-85 right-of-way.

The hydraulic methodologies for the proposed conditions model match the effective model. For instance, no additional cross sections were created, contraction/expansion coefficients were not revised, the jersey barrier was disregarded, and the bridge modeling approach was not adjusted. However, Manning's n values were adjusted as necessary to match proposed conditions.

The proposed conditions were the result of an iterative process to add or reduce modifications to reach zero increase (0.00) in the BFE, floodway elevation, and floodway width. For instance, retaining walls are proposed to limit the embankment impact to the BFE. There is approximately 1400 LF of retaining wall proposed in the southbound lane, and approximately 800 LF of retaining wall proposed in the north bound lane. The proposed modifications were represented in the hydraulic model by overlaying the effective model cross sections, proposed road design stationing centerline, and ESRI aerial imagery in ArcGIS software. The proposed roadway design was the foundation to the proposed conditions hydraulic model. However, the No-Rise analysis is iterative in nature and additional revisions to the proposed roadway design were made. The additional revisions were agreed upon during phone conversations and are not reflected in the original roadway design plans. Upon approval of this report, the intent is to update the roadway design plans with the additional revisions. Proposed conditions within the No-Rise project area are more specifically described by the following:

- 1. I-85 Northbound lane widening between Station 387+00 to Station 422+00
 - a. Proposed conditions incorporated from roadway design plans

April 26, 2015 Rocque Kneece Page 3 of 5

Reference: I-85 / I-385 Interchange – FEMA No-Rise Study – SCDOT Review

- b. Additional revisions include the off-ramp taper beginning at Station 414+00 was shifted north to Station 421+00. Stantec was instructed to maintain 17 feet between existing edge of pavement and outside edge of guardrail from Station 414+00 to Station 421+00, then maintain 21 feet starting at STA422+00
- c. Additional revisions include off ramp taper starting at 421+00. Revisions also include a reduction in the earthen shoulder from approximately 410+00 to 426+00 per the revised plans.
- 2. I-85 Southbound lane widening between Station 387+00 to Station 412+00
 - a. Proposed conditions incorporated from roadway design plans
 - b. Additional revisions include:
 - i. Reduced embankment impact to 10 feet from existing edge-of-pavement at Station 410+00
 - ii. Southbound lane extended 18 additional feet between Station 386+00 and Station 400+00
- 3. I-85 Northbound retaining wall between Station 414+00 to Station 422+00 Station 416+00
 - a. A retaining wall was incorporated as an additional revision at Cross Section 24541 and Cross Section 24668 with embankment cuts
 - b. Additional revisions include embankment cuts at Cross Sections 24541 and 24668 per the proposed plans.
- 4. I-85 Southbound retaining wall between Station 387+00 to Station 401+00
 - a. A retaining wall was incorporated as an additional revision at Cross Sections 28374, 28216, 27999, 27809, 27572, and 27339

April 26, 2015 Rocque Kneece Page 4 of 5

Reference: I-85 / I-385 Interchange – FEMA No-Rise Study – SCDOT Review

Results

Since there was no corrected effective model and no modifications to topography/structures needed, the existing conditions model would be a replica of the duplicate effective model. Therefore, the proposed conditions model results were compared against the duplicate effective model. The difference between the two models resulted in a 0.00 feet (or less) increase in the BFE, floodway elevations, and floodway widths thus satisfying the FEMA No-Rise requirement.

Table 1 – No-Rise Analysis Results (BFE)

		100-yr Wat	er Surface Ele	evations (fee	t NAVD88)
Cross Section	Eff	ective	Existing*	Proposed	Delta
					(Proposed - Existing)
Rocky Creek_24314.4			848.25	848.25	0.00
Rocky Creek_24541.44			849.51	849.5	-0.01
Rocky Creek_24668.16	AQ	849.9	849.94	849.77	-0.17
Rocky Creek_25380.96			851.44	851.23	-0.21
Rocky Creek_25539.36			853.49	853.43	-0.06
Rocky Creek_25687.2	AR	853.6	853.56	853.5	-0.06
Rocky Creek_25893.12			853.58	853.53	-0.05
Rocky Creek_26083.2			853.6	853.54	-0.06
Rocky Creek_26220.48			853.6	853.55	-0.05
Rocky Creek_26400	AS	853.6	853.64	853.58	-0.06
Rocky Creek_26574.24			853.72	853.67	-0.05
Rocky Creek_26806.56			853.74	853.69	-0.05
Rocky Creek_27033.6	AT	853.9	853.85	853.8	-0.05
Rocky Creek_27155.04			853.95	853.94	-0.01
Rocky Creek_27339.84			854.11	854.1	-0.01
Rocky Creek_27572.16	AU	854.2	854.19	854.18	-0.01
Rocky Creek_27809.76			854.49	854.48	-0.01
Rocky Creek_27999.84			854.91	854.91	0.00
Rocky Creek_28216.32	AV	856.5	856.48	856.48	0.00
Rocky Creek_28374.72			857.19	857.19	0.00
Rocky Creek_28570.08			857.42	857.42	0.00
Rocky Creek_28707.36	AW	857.4	857.46	857.45	-0.01
Rocky Creek_28944.96			857.59	857.59	0.00

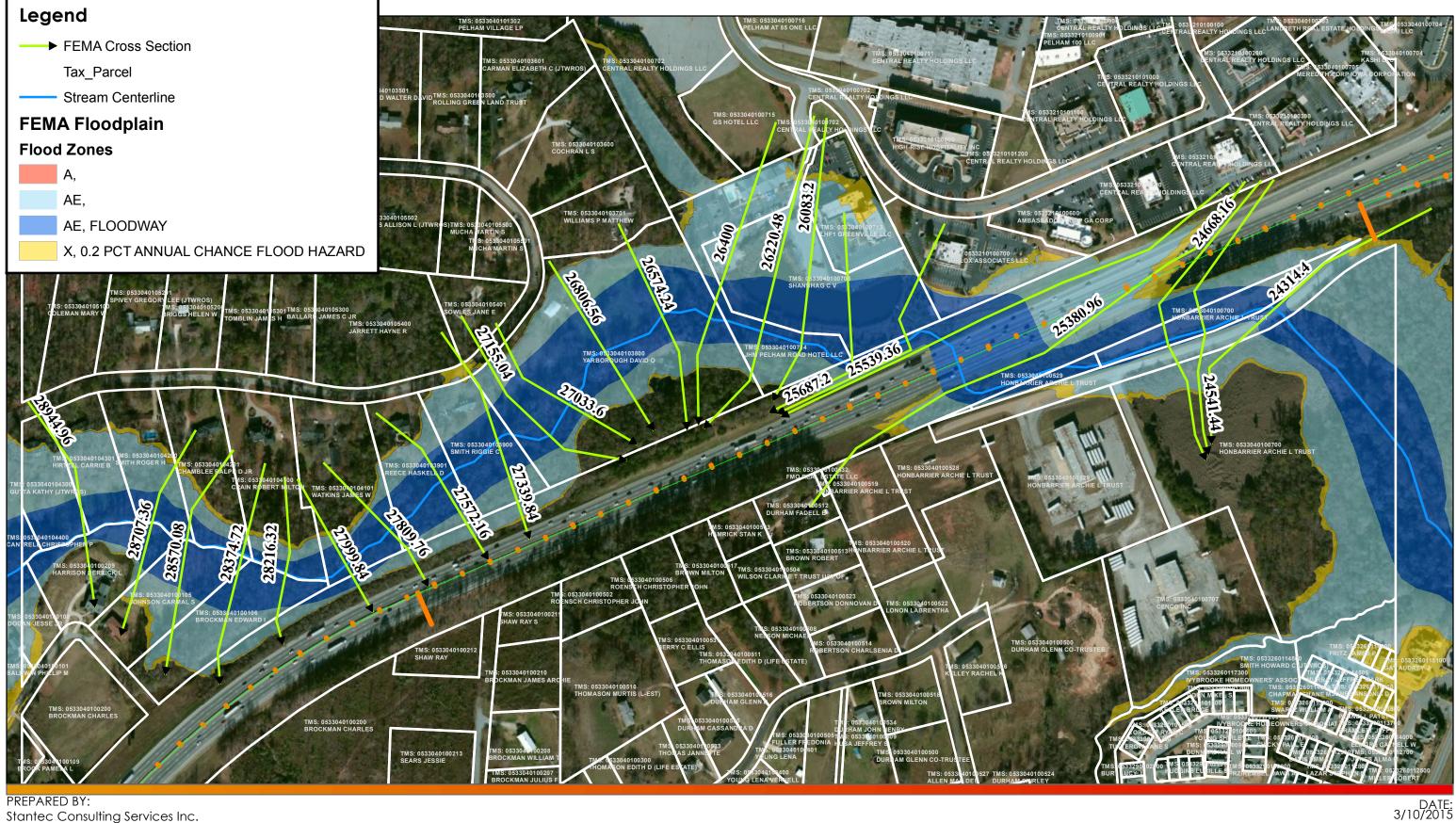
April 26, 2015 Rocque Kneece Page 5 of 5

Reference: I-85 / I-385 Interchange – FEMA No-Rise Study – SCDOT Review

Table 2 – No-Rise Analysis Results (Floodway)

		F	loodway E	levations (feet NAVD88)		Flood	way Width	ıs (feet)
Cross Section		Effective	Existing*	Proposed	Delta	Effective	Existing*	Proposed	Delta
					(Proposed - Existing)				(Proposed - Existing)
Rocky Creek_24314.4			848.98	848.98	0.00		160	160	0.00
Rocky Creek_24541.44			849.95	849.95	0.00		160	160	0.00
Rocky Creek_24668.16	AQ	850.3	850.28	850.20	-0.08	160	160	160	0.00
Rocky Creek_25380.96			851.58	851.50	-0.08		382	382	0.00
Rocky Creek_25539.36			854.35	854.32	-0.03		350	350	0.00
Rocky Creek_25687.2	AR	854.5	854.52	854.49	-0.03	350	350	350	0.00
Rocky Creek_25893.12			854.53	854.50	-0.03		300	300	0.00
Rocky Creek_26083.2			854.53	854.50	-0.03		225	225	0.00
Rocky Creek_26220.48			854.53	854.50	-0.03		225	225	0.00
Rocky Creek_26400	AS	854.6	854.59	854.56	-0.03	225	225	225	0.00
Rocky Creek_26574.24			854.68	854.65	-0.03		270	270	0.00
Rocky Creek_26806.56			854.69	854.66	-0.03		270	270	0.00
Rocky Creek_27033.6	AT	854.8	854.81	854.79	-0.02	270	270	270	0.00
Rocky Creek_27155.04			854.92	854.86	-0.06		270	270	0.00
Rocky Creek_27339.84			855.03	854.97	-0.06		230	230	0.00
Rocky Creek_27572.16	AU	855.2	855.22	855.16	-0.06	215	215	215	0.00
Rocky Creek_27809.76			855.43	855.38	-0.05		155	155	0.00
Rocky Creek_27999.84			855.88	855.84	-0.04		155	155	0.00
Rocky Creek_28216.32	AV	856.9	856.87	856.85	-0.02	155	155	155	0.00
Rocky Creek_28374.72			857.93	857.91	-0.02		235	235	0.00
Rocky Creek_28570.08			858.33	858.32	-0.01		250	250	0.00
Rocky Creek_28707.36	AW	858.3	858.39	858.38	-0.01	250	250	250	0.00
Rocky Creek_28944.96			858.58	858.58	0.00		250	250	0.00

Regards,


STANTEC CONSULTING SERVICES INC.

Shaun Cavey, PE

Project Engineering Specialist

Phone: (843) 740-6345 shaun.cavey@stantec.com

 $sc~u:\ 1710\ active\ 171001537-i-85~\&~i-385~interchange\ design\ drainage\ fema\ 20150301-no_rise_analysis\ report\ 20180329-norise_resubmittal\ 20180329-norise_report.docx$

PREPARED BY:
Stantec Consulting Services Inc.
4969 Centre Pointe Drive, Suite 200
North Charleston, SC 29418
Tel. 843.740.7700
www.stantec.com

ROCKY CREEK NO-RISE STUDY GREENVILLE, SOUTH CAROLINA

PROJECT NO:
SCALE:
1 inch = 300 feet

RD. IO.	STATE	COUNTY	PROJECT ID	ROUTE NO.	SHEET NO.
	S.C.	GREENVILLE	0038III - R02	I-85 / I-385	ILI

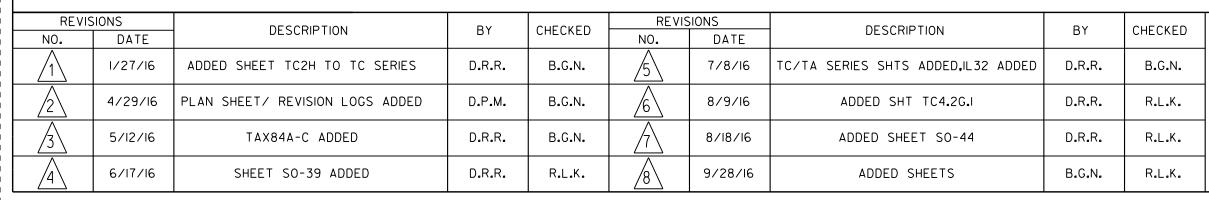
TITLE SHEET 1 RIGHT OF WAY TITLE SHEET 1 INDEX OF SHEETS 1 PLAN SHEET/REVISION LOGS 33 SUMMARY OF ESTIMATED QUANTITIES OMITTED TYPICAL SECTIONS 5 GEOTECHNICAL NOTES 1 DRAINAGE DETAIL SHEET 1 PCCP JOINT DETAILS 1 RIGHT OF WAY DATA SHEETS 2 PROPERTY STRIP MAPS 5 GENERAL CONSTRUCTION NOTES OMITTED PLAN SHEET LAYOUT 1 REFERENCE DATA SHEETS 11 PLAN SHEET LAYOUT 1 REFERENCE DATA SHEETS 31 PROFILE SHEETS 86 CURB PROFILES 1 DRAINAGE SHEETS 35 TEMPORARY SIGNING PLANS 287 TEMPORARY SIGNING PLANS 287 TEMPORARY SIGNING PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 29 SIGNING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS
RIGHT OF WAY TITLE SHEET
INDEX OF SHEETS
PLAN SHEET/REVISION LOGS SUMMARY OF ESTIMATED QUANTITIES TYPICAL SECTIONS GEOTECHNICAL NOTES GEOTECHNICAL NOTES DRAINAGE DETAIL SHEET PCCP JOINT DETAILS RIGHT OF WAY DATA SHEETS PROPERTY STRIP MAPS GENERAL CONSTRUCTION NOTES OMITTED PLAN SHEET LAYOUT REFERENCE DATA SHEETS PLAN SHEETS PLAN SHEETS BEGOVER
SUMMARY OF ESTIMATED QUANTITIES TYPICAL SECTIONS GEOTECHNICAL NOTES J 1 DRAINAGE DETAIL SHEET PCCP JOINT DETAILS RIGHT OF WAY DATA SHEETS PROPERTY STRIP MAPS GENERAL CONSTRUCTION NOTES OMITTED PLAN SHEET LAYOUT REFERENCE DATA SHEETS J 1 PLAN SHEET LAYOUT REFERENCE DATA SHEETS PROFILES J 1 PLAN SHEETS B66 CURB PROFILES J 1 DRAINAGE SHEETS B76 CURB PROFILES J 1 DRAINAGE SHEETS B76 CURB PROFILES J 1 DRAINAGE SHEETS B77 TEMPORARY TRAFFIC CONTROL PLANS B77 TEMPORARY TRAFFIC CONTROL PLANS B78 TEMPORARY ROADWAY PLANS B79 PAVEMENT MARKING PLANS B79 B70
TYPICAL SECTIONS 5 GEOTECHNICAL NOTES 1 DRAINAGE DETAIL SHEET 1 PCCP JOINT DETAILS 1 RIGHT OF WAY DATA SHEETS 2 PROPERTY STRIP MAPS 5 GENERAL CONSTRUCTION NOTES OMITTED PLAN SHEET LAYOUT 1 REFERENCE DATA SHEETS 11 PLAN SHEETS 31 PROFILE SHEETS 86 CURB PROFILES 1 DRAINAGE SHEETS 35 TEMPORARY TRAFFIC CONTROL PLANS 287 TEMPORARY SIGNING PLANS 167 TEMPORARY ROADWAY PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 29 SIGNING PLANS 29 SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 30 I-385 SBCD CROSS SECTIO
GEOTECHNICAL NOTES 1 DRAINAGE DETAIL SHEET 1 PCCP JOINT DETAILS 1 RIGHT OF WAY DATA SHEETS 2 PROPERTY STRIP MAPS 5 GENERAL CONSTRUCTION NOTES OMITTED PLAN SHEET LAYOUT 1 REFERENCE DATA SHEETS 11 PLAN SHEETS 31 PROFILES 11 PLAN SHEETS 86 CURB PROFILES 1 DRAINAGE SHEETS 35 TEMPORARY TRAFFIC CONTROL PLANS 287 TEMPORARY SIGNING PLANS 287 TEMPORARY ROADWAY PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 29 SIGNING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 1-85 CROSS SECTIONS 113 1-85 CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 30 1-385 NBCD CROSS SECTIONS 30 1-385 NBCD CROSS SECTIONS 31 RAMP 1 A CROSS SECTIONS
DRAINAGE DETAIL SHEET 1 PCCP JOINT DETAILS 1 RIGHT OF WAY DATA SHEETS 2 PROPERTY STRIP MAPS 5 GENERAL CONSTRUCTION NOTES OMITTED PLAN SHEET LAYOUT 1 REFERENCE DATA SHEETS 11 PLAN SHEETS 31 PROFILE SHEETS 86 CURB PROFILES 1 DRAINAGE SHEETS 35 TEMPORARY TRAFFIC CONTROL PLANS 287 TEMPORARY TRAFFIC CONTROL PLANS 267 TEMPORARY TRAFFIC CONTROL PLANS 167 TEMPORARY TRAFFIC CONTROL PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 29 SIGNING PLANS 96 SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 6 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 36 <
PCCP JOINT DETAILS 1 RIGHT OF WAY DATA SHEETS 2 PROPERTY STRIP MAPS 5 GENERAL CONSTRUCTION NOTES OMITTED PLAN SHEET LAYOUT 1 REFERENCE DATA SHEETS 11 PLAN SHEETS 31 PROFILE SHEETS 86 CURB PROFILES 1 DRAINAGE SHEETS 35 TEMPORARY TRAFFIC CONTROL PLANS 287 TEMPORARY SIGNING PLANS 167 TEMPORARY ROADWAY PLANS 290 PAVEMENT MARKING PLANS 29 SIGN LIGHTING PLANS 96 SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 105 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1 CROSS SECTIONS 10
RIGHT OF WAY DATA SHEETS 2 PROPERTY STRIP MAPS 5 GENERAL CONSTRUCTION NOTES OMITTED PLAN SHEET LAYOUT 1 REFERENCE DATA SHEETS 11 PLAN SHEETS 31 PROFILE SHEETS 86 CURB PROFILES 1 DRAINAGE SHEETS 35 TEMPORARY TRAFFIC CONTROL PLANS 287 TEMPORARY SIGNING PLANS 167 TEMPORARY SIGNING PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 29 SIGNING PLANS 96 SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 NBCD CROSS SECTIONS 39 I-385 NBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1 CROSS SECTIONS 36 RAMP 1 CROSS SECTIONS 36 RAMP
PROPERTY STRIP MAPS 5 GENERAL CONSTRUCTION NOTES OMITTED PLAN SHEET LAYOUT 1 REFERENCE DATA SHEETS 11 PLAN SHEETS 31 PROFILE SHEETS 86 CURB PROFILES 1 DRAINAGE SHEETS 35 TEMPORARY TRAFFIC CONTROL PLANS 287 TEMPORARY SIGNING PLANS 290 PAVEMENT MARKING PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 96 SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 1-85 CROSS SECTIONS 10 1-85 CROSS SECTIONS 113 1-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 105 1-385 NBCD CROSS SECTIONS 30 1-385 NBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1 CROSS SECTIONS 36 RAMP 2 CROSS SECTIONS 10 RAMP 2 CROSS SECTIONS 25
GENERAL CONSTRUCTION NOTES OMITTED PLAN SHEET LAYOUT 1 REFERENCE DATA SHEETS 11 PLAN SHEETS 31 PROFILE SHEETS 86 CURB PROFILES 1 DRAINAGE SHEETS 35 TEMPORARY TRAFFIC CONTROL PLANS 287 TEMPORARY SIGNING PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 96 SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 1-85 CROSS SECTIONS 113 1-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 105 1-385 CROSS SECTIONS 105 1-385 NBCD CROSS SECTIONS 39 1-385 SBCD CROSS SECTIONS 36 RAMP 1 CROSS SECTIONS 36 RAMP 1 CROSS SECTIONS 36 RAMP 1 CROSS SECTIONS 10 RAMP 2 CROSS SECTIONS 10 RAMP 2 CROSS SECTIONS 20 RAMP 2 CROSS SECTIONS 25 <
PLAN SHEET LAYOUT 1 REFERENCE DATA SHEETS 11 PLAN SHEETS 31 PROFILE SHEETS 86 CURB PROFILES 1 DRAINAGE SHEETS 35 TEMPORARY TRAFFIC CONTROL PLANS 287 TEMPORARY SIGNING PLANS 287 TEMPORARY ROADWAY PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 96 SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 NBCD CROSS SECTIONS 105 I-385 SBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1 CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2 CROSS SECTIONS 50 RAMP 2 CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 25 R
REFERENCE DATA SHEETS 11 PLAN SHEETS 31 PROFILE SHEETS 86 CURB PROFILES 1 DRAINAGE SHEETS 35 TEMPORARY TRAFFIC CONTROL PLANS 287 TEMPORARY SIGNING PLANS 287 TEMPORARY ROADWAY PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 96 SIGN LIGHTING PLANS 96 SIGN LIGHTING PLANS 10 I-85 CROSS SECTIONS 10 I-85 CROSS SECTIONS 10 I-85 CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1 CROSS SECTIONS 34 RAMP 2 CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2 CROSS SECTIONS 20 RAMP 3
PLAN SHEETS 31 PROFILE SHEETS 86 CURB PROFILES 1 DRAINAGE SHEETS 35 TEMPORARY TRAFFIC CONTROL PLANS 287 TEMPORARY SIGNING PLANS 167 TEMPORARY ROADWAY PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 96 SIGN LIGHTING PLANS 96 SIGN LIGHTING PLANS 10 I-85 CROSS SECTIONS 10 I-85 CROSS SECTIONS 10 I-85 CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 NBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 34 RAMP 1A CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2 CROSS SECTIONS 10 RAMP 2 CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 25 RAMP 4 CROSS SECTIONS 26 RAMP 4 CROSS S
PROFILE SHEETS 86 CURB PROFILES 1 DRAINAGE SHEETS 35 TEMPORARY TRAFFIC CONTROL PLANS 287 TEMPORARY SIGNING PLANS 167 TEMPORARY ROADWAY PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 96 SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 NBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1 CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 20 RAMP 4 CROSS SECTIONS 28
CURB PROFILES 1 DRAINAGE SHEETS 35 TEMPORARY TRAFFIC CONTROL PLANS 287 TEMPORARY SIGNING PLANS 167 TEMPORARY ROADWAY PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 96 SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 113 I-85 CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 NBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 34 RAMP 1A CROSS SECTIONS 34 RAMP 1B CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 <tr< td=""></tr<>
DRAINAGE SHEETS 35 TEMPORARY TRAFFIC CONTROL PLANS 287 TEMPORARY SIGNING PLANS 167 TEMPORARY ROADWAY PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 96 SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1 CROSS SECTIONS 34 RAMP 1B CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2B CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 33 RAMP 4 CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
TEMPORARY TRAFFIC CONTROL PLANS 287 TEMPORARY SIGNING PLANS 167 TEMPORARY ROADWAY PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 96 SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1 CROSS SECTIONS 34 RAMP 1B CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 28 RAMP 4 CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
TEMPORARY SIGNING PLANS 167 TEMPORARY ROADWAY PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 96 SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 10 I-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1 CROSS SECTIONS 36 RAMP 1B CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 20 RAMP 4 CROSS SECTIONS 17 RAMP 4B CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 28 RAMP 7 CROSS SECTIONS 5
TEMPORARY ROADWAY PLANS 290 PAVEMENT MARKING PLANS 29 SIGNING PLANS 96 SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1 CROSS SECTIONS 36 RAMP 1A CROSS SECTIONS 34 RAMP 1B CROSS SECTIONS 10 RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 20 RAMP 4 CROSS SECTIONS 33 RAMP 4 CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
PAVEMENT MARKING PLANS 29 SIGNING PLANS 96 SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1 CROSS SECTIONS 36 RAMP 1A CROSS SECTIONS 34 RAMP 1B CROSS SECTIONS 10 RAMP 2 CROSS SECTIONS 10 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 33 RAMP 4B CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
SIGNING PLANS 96 SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1A CROSS SECTIONS 34 RAMP 1B CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 33 RAMP 4B CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
SIGN LIGHTING PLANS 29 ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1A CROSS SECTIONS 34 RAMP 1B CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 20 RAMP 3A CROSS SECTIONS 17 RAMP 4B CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 28 RAMP 7 CROSS SECTIONS 5
ROADWAY STRUCTURE SHEETS 117 EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1A CROSS SECTIONS 34 RAMP 1B CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 20 RAMP 3A CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 33 RAMP 4B CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
EROSION CONTROL PLANS 10 I-85 CROSS SECTIONS 113 I-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1A CROSS SECTIONS 34 RAMP 1B CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 20 RAMP 3A CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 33 RAMP 4B CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
I-85 CROSS SECTIONS 24 I-85 NBCD CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1A CROSS SECTIONS 34 RAMP 1B CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 20 RAMP 3A CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 33 RAMP 4B CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
I-85 NBCD CROSS SECTIONS 24 PELHAM RAMP CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1A CROSS SECTIONS 34 RAMP 1B CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 20 RAMP 3A CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 33 RAMP 4B CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
PELHAM RAMP CROSS SECTIONS 6 I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1A CROSS SECTIONS 34 RAMP 1B CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 20 RAMP 3A CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 33 RAMP 4B CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
I-385 CROSS SECTIONS 105 I-385 NBCD CROSS SECTIONS 39 I-385 SBCD CROSS SECTIONS 31 RAMP 1 CROSS SECTIONS 36 RAMP 1A CROSS SECTIONS 34 RAMP 1B CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 20 RAMP 3A CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 33 RAMP 4B CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
I-385 NBCD CROSS SECTIONS39I-385 SBCD CROSS SECTIONS31RAMP 1 CROSS SECTIONS36RAMP 1A CROSS SECTIONS34RAMP 1B CROSS SECTIONS13RAMP 2 CROSS SECTIONS10RAMP 2A CROSS SECTIONS50RAMP 2B CROSS SECTIONS25RAMP 3 CROSS SECTIONS20RAMP 3A CROSS SECTIONS17RAMP 4 CROSS SECTIONS33RAMP 4 CROSS SECTIONS28RAMP 5 CROSS SECTIONS14RAMP 7 CROSS SECTIONS5
I-385 SBCD CROSS SECTIONS RAMP 1 CROSS SECTIONS RAMP 1A CROSS SECTIONS RAMP 1B CROSS SECTIONS RAMP 2 CROSS SECTIONS RAMP 2A CROSS SECTIONS RAMP 2B CROSS SECTIONS RAMP 3 CROSS SECTIONS RAMP 3 CROSS SECTIONS RAMP 3A CROSS SECTIONS RAMP 4 CROSS SECTIONS RAMP 4 CROSS SECTIONS RAMP 5 CROSS SECTIONS RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS
RAMP 1 CROSS SECTIONS RAMP 1A CROSS SECTIONS RAMP 1B CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 20 RAMP 3A CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 33 RAMP 4 CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS
RAMP 1A CROSS SECTIONS RAMP 1B CROSS SECTIONS 13 RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 20 RAMP 3A CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 33 RAMP 4B CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
RAMP 1B CROSS SECTIONS RAMP 2 CROSS SECTIONS RAMP 2A CROSS SECTIONS RAMP 2B CROSS SECTIONS RAMP 3 CROSS SECTIONS RAMP 3A CROSS SECTIONS RAMP 4 CROSS SECTIONS RAMP 4 CROSS SECTIONS RAMP 4B CROSS SECTIONS RAMP 5 CROSS SECTIONS RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
RAMP 2 CROSS SECTIONS 10 RAMP 2A CROSS SECTIONS 50 RAMP 2B CROSS SECTIONS 25 RAMP 3 CROSS SECTIONS 20 RAMP 3A CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 33 RAMP 4B CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
RAMP 2A CROSS SECTIONS RAMP 2B CROSS SECTIONS RAMP 3 CROSS SECTIONS RAMP 3A CROSS SECTIONS RAMP 4 CROSS SECTIONS RAMP 4 CROSS SECTIONS RAMP 4B CROSS SECTIONS RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS
RAMP 2A CROSS SECTIONS RAMP 2B CROSS SECTIONS RAMP 3 CROSS SECTIONS RAMP 3A CROSS SECTIONS RAMP 4 CROSS SECTIONS RAMP 4 CROSS SECTIONS RAMP 4B CROSS SECTIONS RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
RAMP 2B CROSS SECTIONS RAMP 3 CROSS SECTIONS RAMP 3A CROSS SECTIONS RAMP 4 CROSS SECTIONS RAMP 4B CROSS SECTIONS RAMP 5 CROSS SECTIONS RAMP 7 CROSS SECTIONS 5
RAMP 3 CROSS SECTIONS RAMP 3A CROSS SECTIONS 17 RAMP 4 CROSS SECTIONS 33 RAMP 4B CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
RAMP 3A CROSS SECTIONS RAMP 4 CROSS SECTIONS RAMP 4B CROSS SECTIONS RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
RAMP 4 CROSS SECTIONS RAMP 4B CROSS SECTIONS RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
RAMP 4B CROSS SECTIONS 28 RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
RAMP 5 CROSS SECTIONS 14 RAMP 7 CROSS SECTIONS 5
RAMP 7 CROSS SECTIONS 5
17411 0 010000 010110110
RAMP 8A CROSS SECTIONS 10
TOTAL SHEETS 1917
RAMP 9 CROSS SECTIONS RAMP 10 CROSS SECTIONS RAMP 11 CROSS SECTIONS DRAINAGE CROSS SECTIONS TOTAL SHEETS

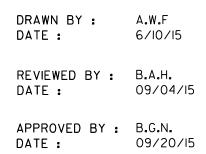
\triangle	ADDED CHEETCOO TA VCOA TO TA VCOE TA VA 45A TO TA VA 45D TA V4.5A
8	ADDED SHEETS 3G, TA-X63A TO TA-X63E, TA-X145A TO TA-X145D, TA-X151A TA-X157A, TA-X157B, TA-X182 TO TA-X210, I-385 X52A, I-385 X52B,
	I-385 NBĆD X34A, I-385 NBCD X12A, RAMP'9 X0, RAMP'9 X5.
Λ	

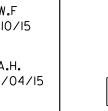
9 10/21/16 - ADDED SHEETS IL33, TA-24, TA-X211 TO TA-X220.

10/28/16 - ADDED SHEETS IL34, D33, TC4.2AA TO TC4.2AC, TC4.2BA TO TC4.2BC, TC4.2CA TO TC4.2CH, TC4.2Q, TA-2C, TA-25, TA-X221 TO TA-X235, S0-40 TO S0-43, S17-1, S18-1 TO S18-4, S55-1 TO S55-5, EC8 TO EC10.

1/12/17 - ADDED SHEET S32-7

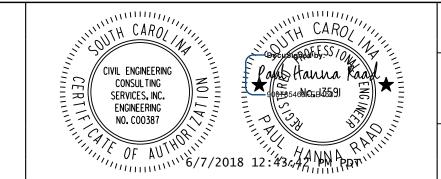

2/2/17 - ADDED SHEETS TA-26, TA-X236 TO TA-X241


3/16/17 - ADDED SHEET D32A

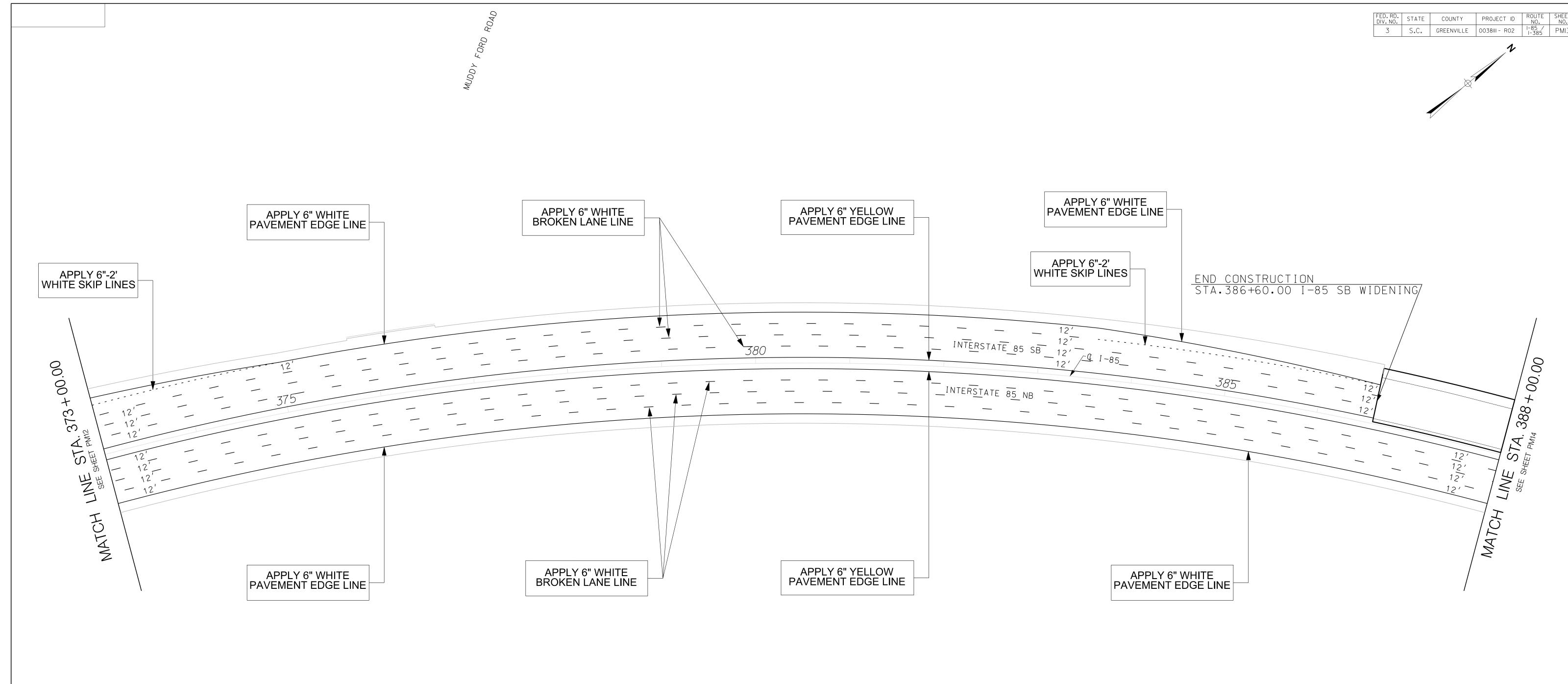

12/18/17 - ADDED SHEETS TC4.2A.1A AND TC4.2A.1B

1/9/18 - ADDED SHEET SC9

5/3/18 - REMOVED SHEETS S18-2, S18-3, S18-4, S55-1, S55-2, S55-3, S55-4, S55-5



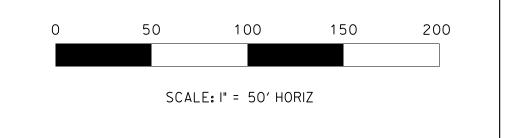
CIVIL ENGINEERING CONSULTING SERVICES, INC.

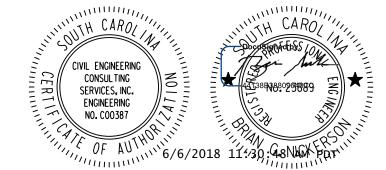


SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

SCE

I-85 / I-385 INTERCHANGE


INDEX OF SHEETS



REVISIONS NO. DATE REVISIONS DESCRIPTION CHECKED DESCRIPTION CHECKED DRAWN BY: A.W.F. DATE: 9/4/15 NO. DATE REMOVED 185 SB PAVEMENT MARKINGS STA. 386+60.00 TO STA. 388+00.00 05/02/18 B.G.N. REVIEWED BY: D.R.R. DATE: 9/4/15 APPROVED BY: B.G.N. DATE: 9/4/15

SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

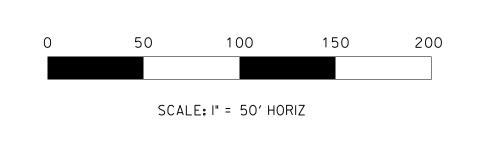
I-85 / I-385 INTERCHANGE

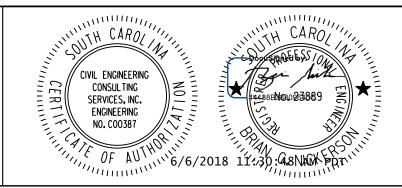
PAVEMENT MARKING PLAN SHEET

STA. 373+00.00 TO STA. 388+00.00

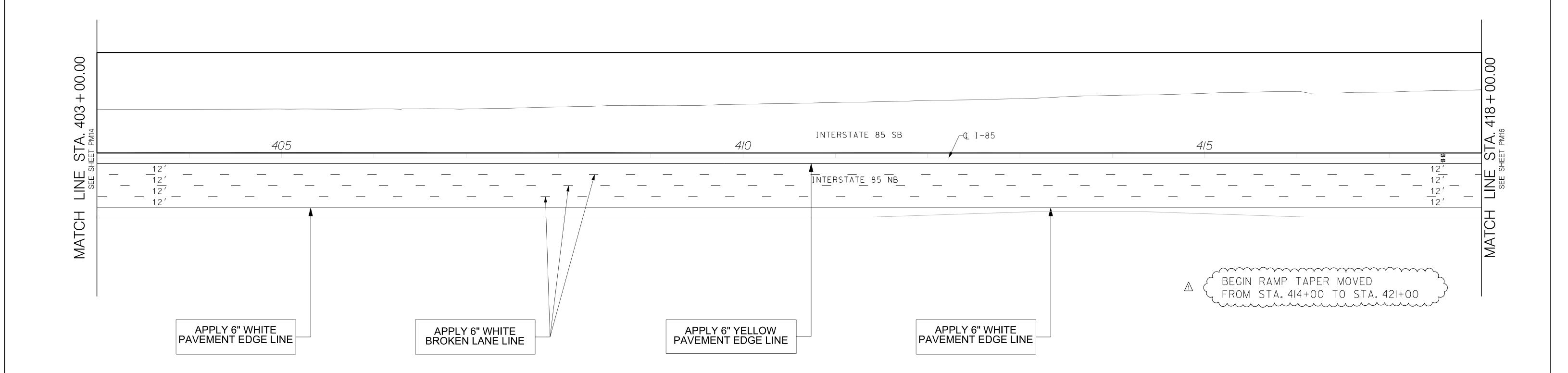
SCE

FED. RD. STATE COUNTY PROJECT ID ROUTE NO. NO.


3 S.C. GREENVILLE 0038III - R02 I-85 / I-385 PMI4 388 + 00.00 INTERSTATE 85 SB √Q I-85 __INTERSTATE 85_NB APPLY 6" WHITE PAVEMENT EDGE LINE APPLY 6" WHITE PAVEMENT EDGE LINE APPLY 6" YELLOW PAVEMENT EDGE LINE APPLY 6" WHITE BROKEN LANE LINE


REVI	SIONS	DESCRIPTION	BY	CHECKED	REVIS	IONS	DESCRIPTION	BY	CHECKED		
NO.	DATE	DESCRIPTION	וט	CHECKED	NO.	DATE	DESCRIPTION		CHECKED	DRAWN BY :	A.W.F. 9/4/15
\triangle	05/02/18	REMOVED 185 SB PAVEMENT MARKINGS STA. 388+00.00 TO STA. 403+00.00	R.L.D.	B.G.N.						DATE :	9/4/15
										REVIEWED BY : DATE :	D.R.R. 9/4/i5
										APPROVED BY :	B.G.N. 9/4/15
										DATE:	9/4/15

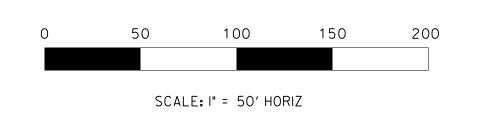
SOUTH	CAROLINA	DEPARTMENT
OF TRA	ANSPORTAT	ION

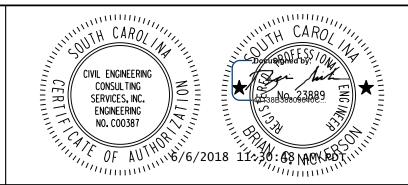

I-85 / I-385 INTERCHANGE

SCDT

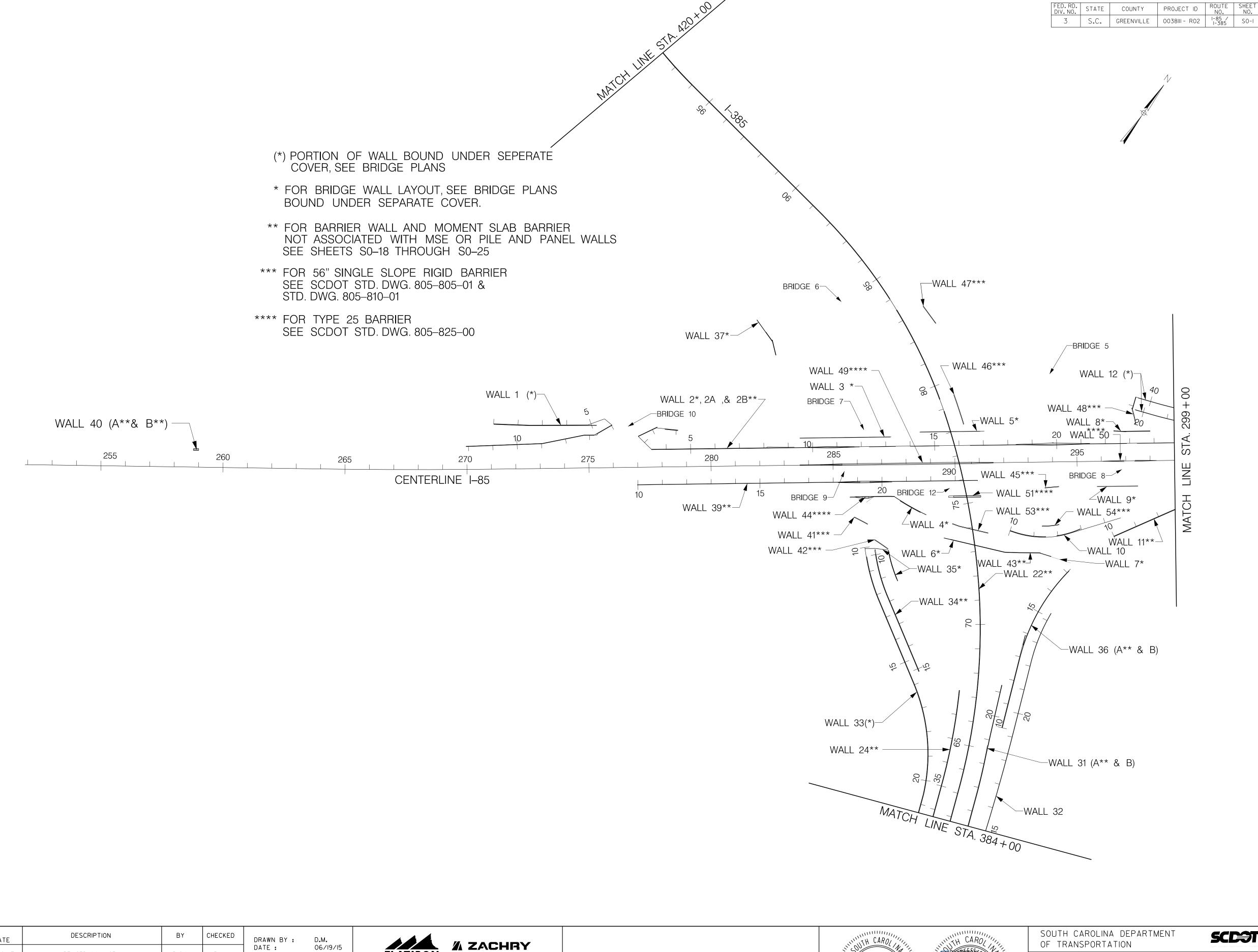
PAVEMENT MARKING PLAN SHEET STA. 388+00.00 TO STA. 403+00.00

FED. RD. STATE COUNTY PROJECT ID ROUTE NO. NO.


3 S.C. GREENVILLE 0038III - R02 I-85 / PMI5



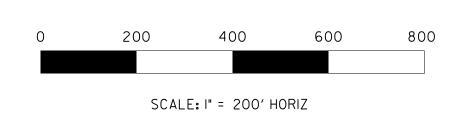
REVISIONS NO. DATE REVISIONS DESCRIPTION CHECKED DESCRIPTION CHECKED DRAWN BY: A.W.F. DATE: 9/4/15 NO. DATE ADJUSTED PAVEMENT MARKINGS FOR PELHAM ROAD EXIT R.L.D. 05/16/16 B.G.N. REVIEWED BY: D.R.R. DATE: 9/4/15 REMOVED 185 SB PAVEMENT MARKINGS STA. 403+00.00 TO STA. 414+30.20 B.G.N. 05/02/18 APPROVED BY: B.G.N. DATE: 9/4/15

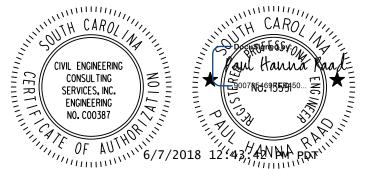


SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

SCE

I-85 / I-385 INTERCHANGE

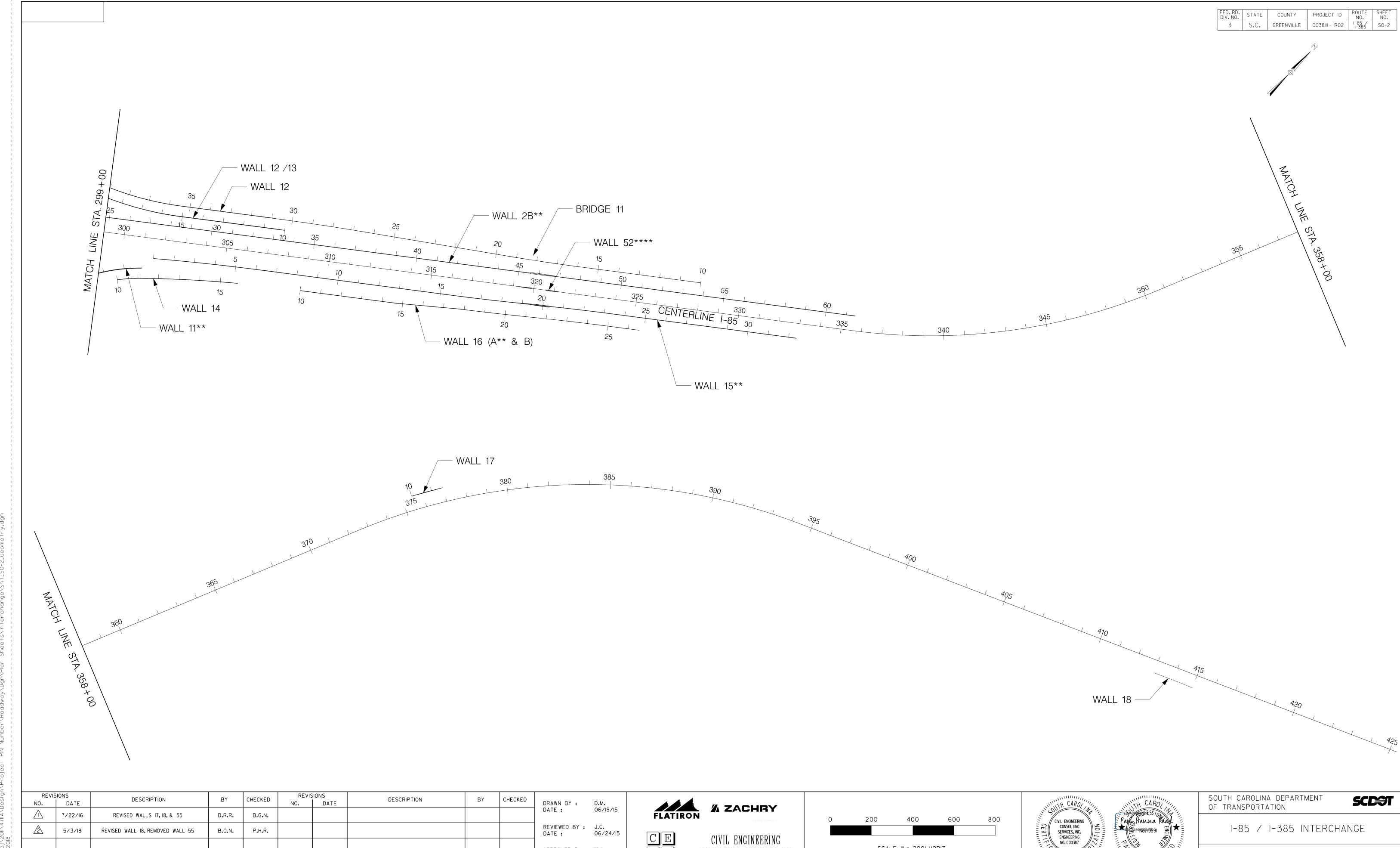

PAVEMENT MARKING PLAN SHEET STA. 403+00.00 TO STA. 418+00.00



NO. DATE NO. DATE DATE : D.R.R. <u>/5\</u> REVISED WALL 27 TYPE AND BEGIN STA. B.G.N. 10/20/17 B.G.N. REVISED WALL 23 R.L.K. REVIEWED BY : J.C. 2 D.R.R. REVISED WALLS 17, 18,38, & 55 B.G.N. 5/3/18 REVISED WALL 18, REMOVED WALL 55 P.H.R. DATE : <u>/3\</u> B.G.N. R.L.K. 11/1/16 REVISED WALL 16B APPROVED BY: M.A._ DATE: 06/26/15 4 B.G.N. 1/19/17 R.L.K. REVISED WALL 10

FLATIRON 06/19/15 06/24/15

CIVIL ENGINEERING CONSULTING SERVICES, INC.



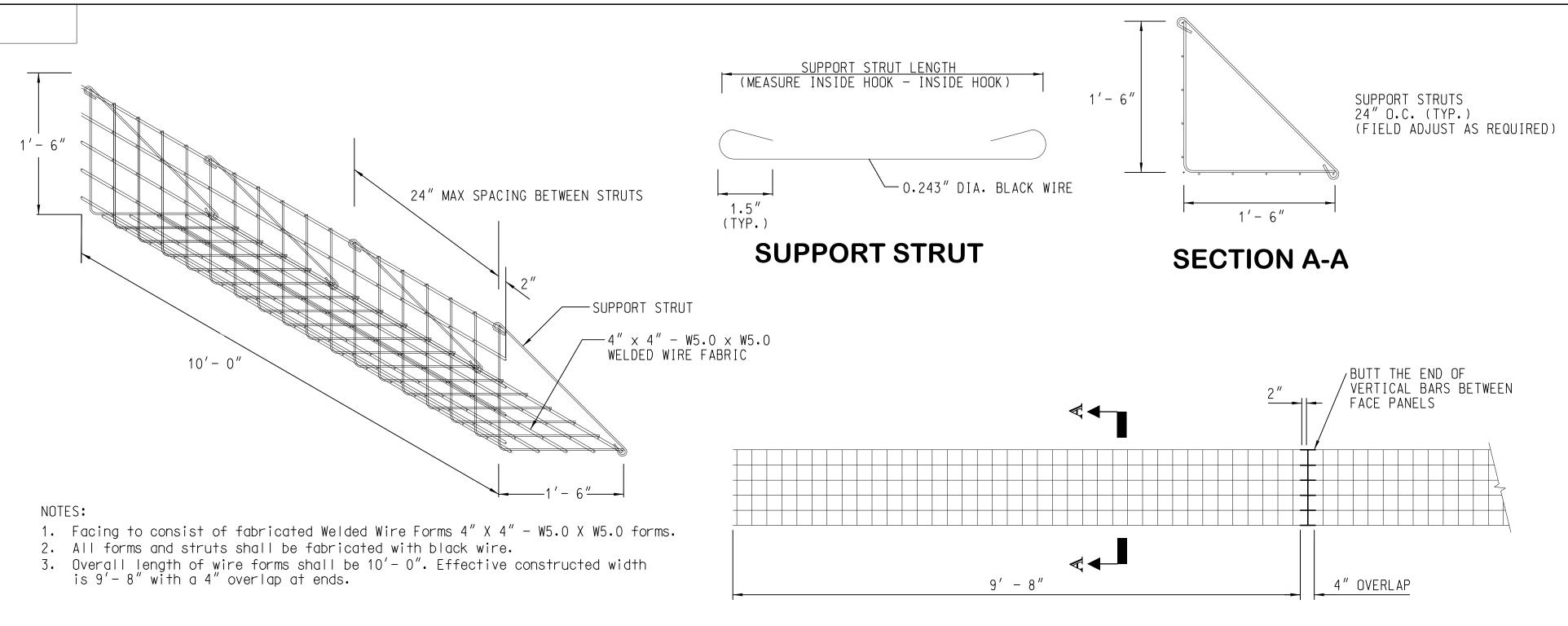
OF TRANSPORTATION

I-85 / I-385 INTERCHANGE

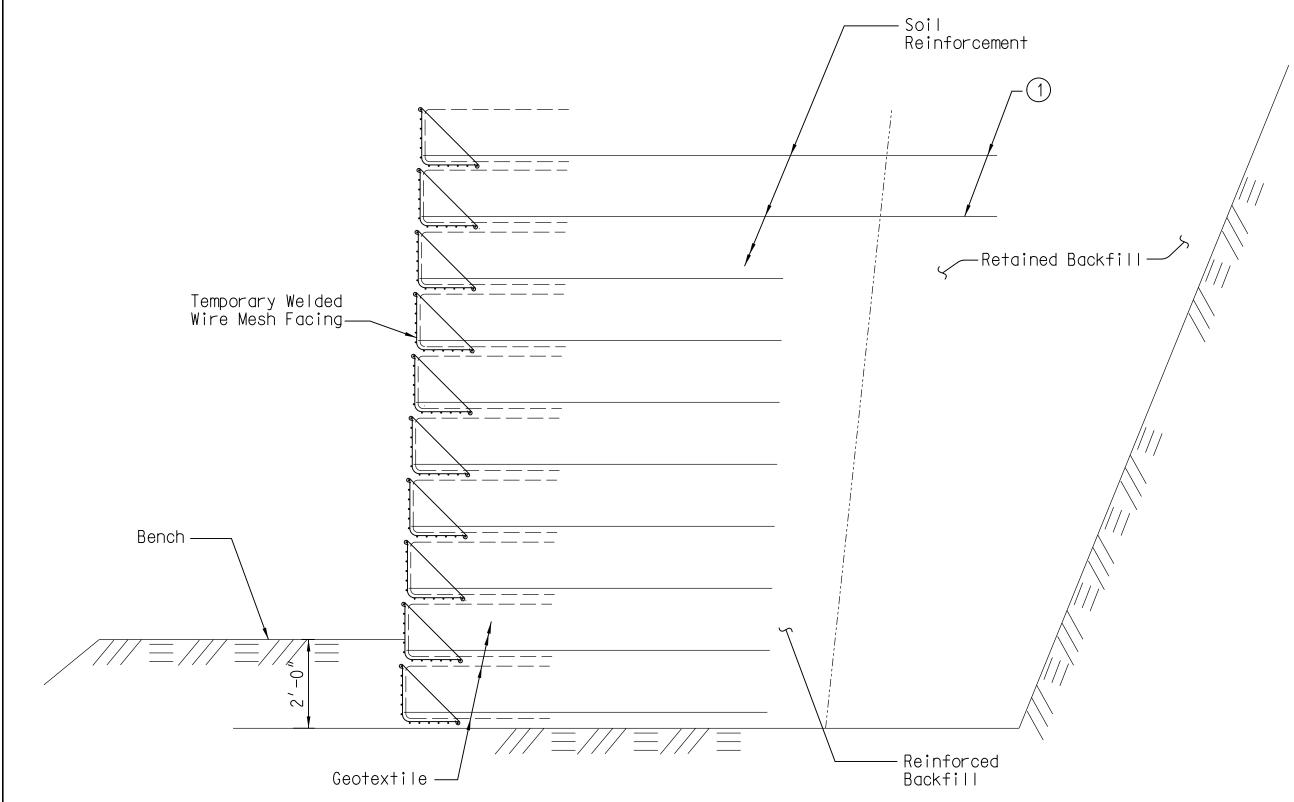
WALL LAYOUT SHEET

CIVIL ENGINEERING

CONSULTING SERVICES, INC.


APPROVED BY: M.A._ DATE: 06/26/15

SCALE: I" = 200' HORIZ

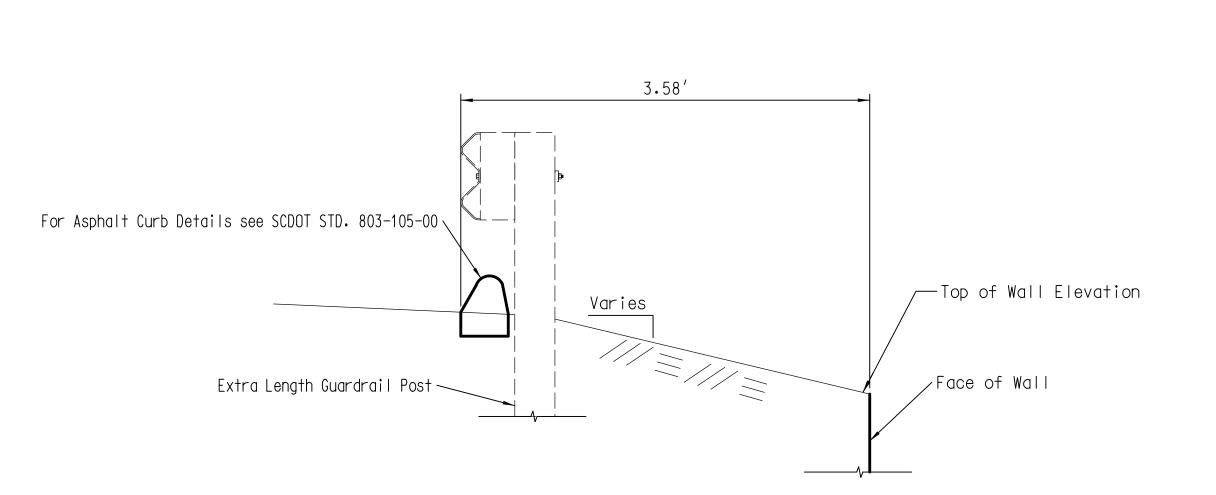

WALL LAYOUT SHEET

FED. RD. STATE COUNTY PROJECT ID ROUTE NO. NO.

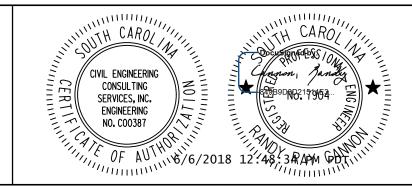
3 S.C. GREENVILLE 0038III - R02 I-85 / S0-40

WELDED WIRE FORM FACING UNIT

TEMPORARY MSE WALL TYPICAL SECTION


Extend top two layers of soil reinforcement 5 feet beyond the end of the lower layers of soil reinforcement.

REVIS	SIONS	DESCRIPTION	BY	CHECKED	REVIS	IONS	DESCRIPTION	D.V.	CHECKED		
NO.	DATE			CHECKED	NO.	DATE	DESCRIPTION	BY	CHECKED	DRAWN BY :	D.P.M.
\triangle	5/3/18	REVISED WALL FACE/GUARDRAIL DETAIL REMOVED MOMENT SLAB DETAIL REMOVED MSE WALL INTERACTION DETAIL	D.P.M.	M.S.A.						DATE :	07/26/16
										REVIEWED BY : DATE :	M.S.A. 07/26/16
										APPROVED BY :	R.R.C
										DATE :	07/26/16



WALL FACE AND GUARDRAIL DETAIL

Notes:

Extra Length Guardrail post to be used. Contractor shall take the necessary measures needed to avoid conflict between guardrail post and wire wall soil reinforcements.

	SOUTH	CAROLINA	DEPARTMENT
l	OF TR	ANSPORTAT	ION

I-85 / I-385 INTERCHANGE

SCE

WALL DETAILS

PROJECT ID ROUTE SHEET NO. NO. 3 S.C. GREENVILLE 0038III - R02 1-85 / S0-43

The following notes apply to borrow materials:

Provide borrow materials meeting the following minimum requirements:

- A sandy material (35% or less passing 0.075 mm) with a minimum total soil unit weight, you of 110 pcf, with a maximum dry density exceeding 100 pcf.
- Minimum friction angle, φ, of 30° and cohesion, c, of 50 psf for embankment fill, alternatively embankment fill may consist of a minimum friction angle (φ) of 34° with zero cohesion.
- No. 57 Stone backfill for Mechanically Stabilized Earth Walls

In addition, determine the moisture-density relationship and classification of the material. Test and submit the classification, moisture-density relationship, and soil strength parameters of the material to the Éngineer for acceptance. An AASHTO certified laboratory is required to perform the testing. Contact the RPG Geotechnical Engineer for a list of locally available AASHTO certified laboratories. The Department may perform independent testing to assure quality.

Determine the friction angle and cohesion using either direct shear testing or consolidated-undrained triaxial shear testing with pore pressure measurements. Direct Shear testing shall only be performed on soils with a fines content of less than 25 percent. Classification testing includes grain-size distribution with wash #200 sieve, moisture plasticity testing and natural moisture content. Use the Standard Proctor test to determine the moisture-density relationship. Remold all samples used in shear strength testing to 95 percent of the Standard Proctor density. Conduct shear strength testing at the initial selection of the borrow pit, any subsequent changes in borrow pits, and for every 10,000 cy of materials placed. Perform classification testing for every 50,000 cy of materials placed, including the material used for the shear strength testing. Additional shear testing may be required if, in the opinion of the RCE, the materials being placed are different from those originally tested.

If these minimum criteria cannot be met, provide the soil parameters for the intended borrow excavation material for the project site to the Engineer for review and acceptance. After acceptable borrow material is obtained, compact the fill to the required finish grade line using the compactive effort indicated in the Standard Specifications for Highway Construction, Section 205 (Embankment Construction).

The following notes apply to muck excavation:

Any areas identified on the plans and any additional areas that are discovered to deflect or settle may require corrective action as directed by the RCE. This may include undercutting; placing No. 57 stone aggregate that is separated from other borrow materials by a geotextile for separation of sub-grade and sub-base, and/or additional compactive effort to the approval of the RCE.

In areas that require mucking or undercutting, borrow material soil may be placed as a bridge lift as long as the grade on which the material is being placed is at least 2 feet above ground water level. In the event that groundwater does not allow backfilling with a borrow material soil, use a No. 57 stone as the bridge lift material. Borrow material bridge lifts may not exceed a 2-foot thickness. The depth at which mucking or undercutting is required is dependent upon encountering a suitable bearing material within the excavation or if a predetermined elevation or depth is required. In most cases, do not undercut more than 3 to 5 feet. The RCE will determine the final mucking or undercutting thickness, unless otherwise specified in the project plans and/or specifications. If a suitable bearing soil is not encountered within this depth range, place a P1 biaxial geogrid with an aperture size of less than or equal to 1 inch and in accordance with the project special provisions beneath a 2-foot thick bridge lift of No. 57 stone. If additional compacted borrow material soil is needed to reach grade, place a geotextile for separation of sub-grade and sub-base between the No. 57 stone and the overlying compacted soil. A bridge lift consisting of borrow material soil may not be placed within 3 feet of the base of the pavement section. Place only compacted borrow material soil or No. 57 stone within this zone. Reference the Standard Specifications for Highway Construction. Earthwork Section. Division 200.

Additional Notes:

See S0-16 and S0-17 for additional MSE Wall Design Parameters.

The following notes apply for MSE Wall Subgrades:

Prior to construction of the leveling pad and MSE fill, the RCE shall verify that the retaining wall is founded on subgrade materials possessing the minimum allowable bearing capacity noted on wall plan and elevation sheets. If the RCE determines that the subgrade is unacceptable for placement of MSE fill, the contractor shall undercut the subgrade to the limits directed by the RCE. Unacceptable subgrade materials include, but are not limited to, all high plasticity clays and elastic silts (CH, MH), low plasticity clays and silts (CL, ML) with an unconfined compressive strength less than 2,000 psf, and deleterious débris. Replacement of undercut material will be with Backfill Material, meeting requirements outlined in the SCDOT Standard Specifications for Highway Construction.

The foundation area for the MSE walls might have scattered pockets of soft soils that might be present at the surface or just below the surface for the base of the MSE fill. These soft pockets are only expected to extend a few feet below the base of the MSE fill. The quality assurance representative shall proofroll the subgrade in this area and/or conduct dynamic cone tests at regular intervals to determine that the subgrade meets the requirements of the paragraph above. There are several locations along the roadway alignment where proposed drainage structures are situated in front of (i.e. parallel) MSE walls, or where new and existing draining structures pass beneath the MSE walls. Where new pipes are parallel to the proposed wall, the pipe should be installed prior to the proposed wall or the wall design should account for the temporary reduction in passive resistance. Where pipes pass beneath walls, the pipes should be designed to account for the increased loading associated with the wall backfill. We recommend the top of each pipe be situated a minimum of 1 foot below the bottom of retaining.

The following notes apply for settlement and displacement monitoring:

The contractor shall establish a monitoring program consisting of settlement instruments. The settlement monitoring program must include establishing settlement monitoring instruments on the subgrade soils prior to fill placement, and at design pavement subgrade elevation. Settlement monitoring instruments are required at a spacing of every 100 feet along MSE Walls and every 500 feet along embankments with new fill thicknesses exceeding 20 feet. Instruments shall be established at the centerline of road and edge of pavement. Settlement monitoring shall continue until three consecutive measurements demonstrate the rate of settlement is less than 0.1 inches per year. No more than one measurement shall be obtained on a single day.

A minimum of 2 measurements shall be obtained on monuments prior to fill placement, and instruments shall be measured weekly during fill placement. Instrumentation measurements shall be provided to the Geotechnical Engineer within 24 hours of measurements for interpretation. Interpreted results shall be provided to the RCE.

Where the new fill meets the existing slope, the existing slope shall be benched to

Should seeps or thick lenses of highly plastic soils be observed in the planned fill and cut slopes that are steeper than 2H:1V, ECS must be contacted to determine if the steeper slopes may be constructed as planned or if slope flattening or reinforcing is required. Similarly, if soft or wet ground conditions are observed at the base of planned fill embankments, the QA representative must determine the limits of undercutting required or required in-situ treatment.

The following Plan Notes apply to Mechanically Stabilized Earth walls:

Reinforced Backfill (Granular Fill or stone.)

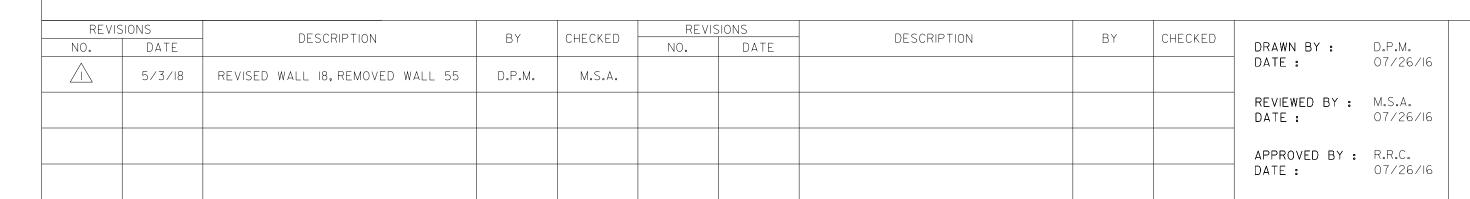
Internal Friction Angle (deg) = 36 Total Unit Weight = 120 pcf Surcharge Dead Load for Pavement Overlay = 140 psf **Active Earth Pressure Coefficient = 0.26**

Retained Backfill

Internal Friction Angle (deg) = 30 Total Unit Weight = 117 pcf **Active Earth Pressure Coefficient = 0.33**

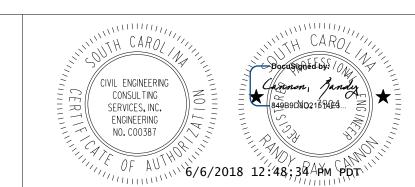
Wall 17 I-85 Station **Foundation Soils Total Internal Friction Angle (deg) = 26** Total Cohesion = 0 psf Effective Internal Friction Angle (deg) = 26 Effective Cohesion = 0 psf

Wall Height Min. Breg Factored Bearing (Static) Factored Bearing (Seismic) $0 < H \le 7.5$ 14.5 ft

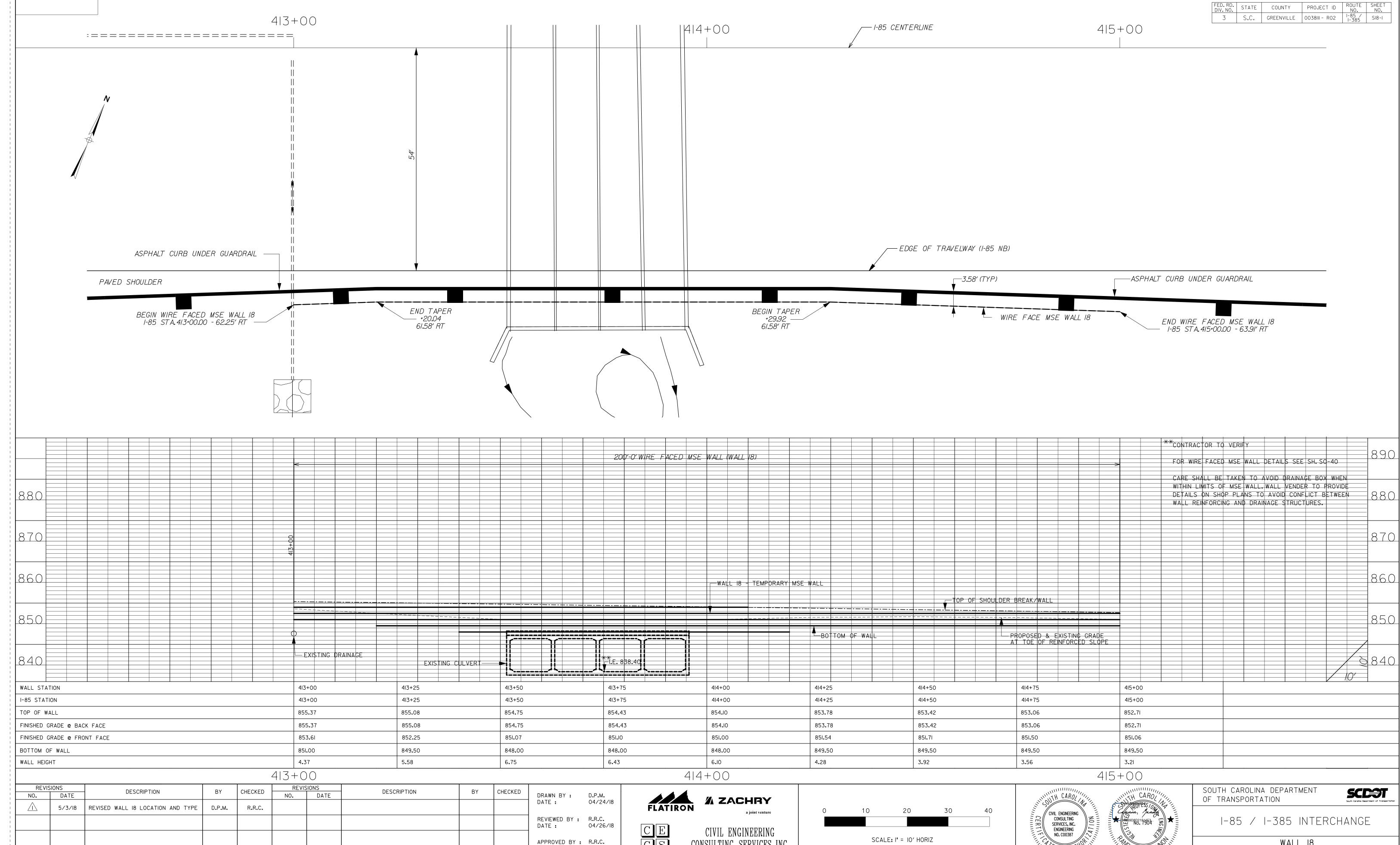

Wall 18 I-85 Station 413+00 to 415+00 **Foundation Soils** Total Internal Friction Angle (deg) = 0 Total Cohesion = 1000 psf **Effective Internal Friction Angle (deg) = 26** Effective Cohesion = 100 psf

Wall Height Min. Breq Factored Bearing (Static) Factored Bearing (Seismic)

3 < H ≤ 7 12.5 ft 5.400 8,400


The following notes apply to slope construction:

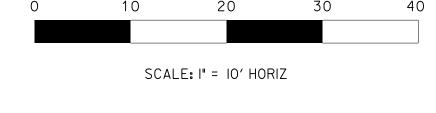
limit the potential for a preferential failure surface and to allow compaction at the interface. Benches shall have a minimum horizontal length of 8 feet and a vertical rise of no more than 3 feet. Fill slopes of 2H:1V or steeper shall be overbuilt (i.e. fill should temporarily extend beyond the final slope face) to allow compaction at the slope face. After compaction is complete, the slope may be regraded to the final inclination.



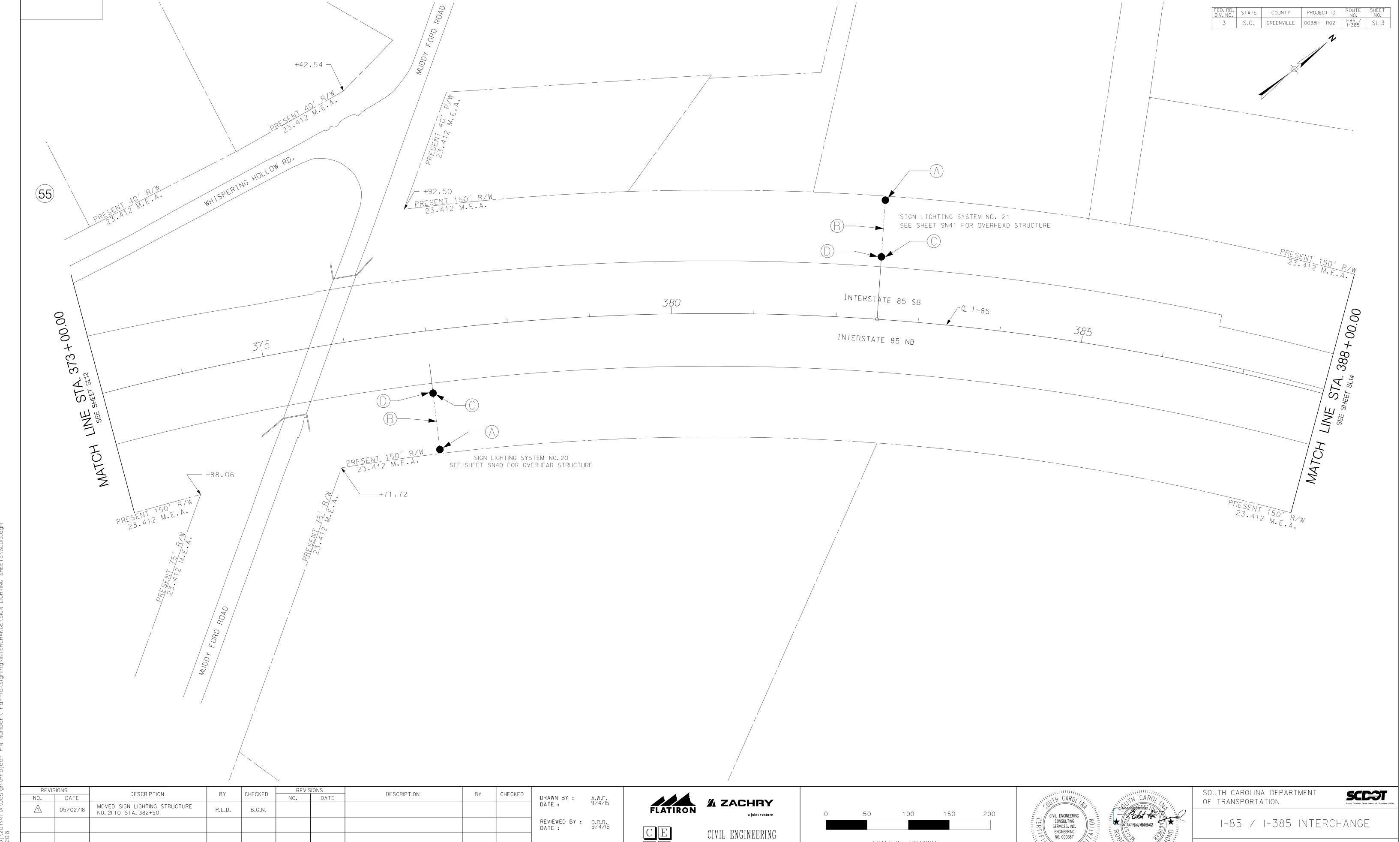
SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

I-85 / I-385 INTERCHANGE

GEOTECH & MSE WALL NOTES FOR ROCKY CREEK


SCE

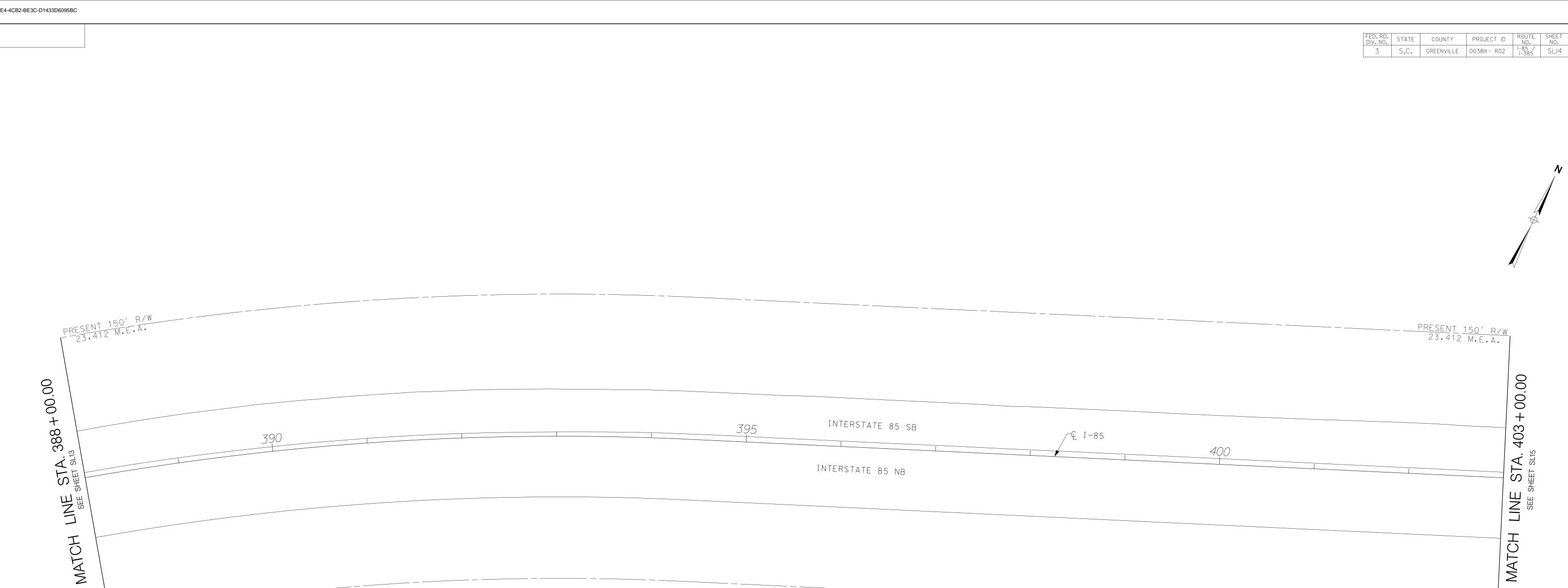
04/26/18


DATE :

CONSULTING SERVICES, INC.

WALL 18 PLAN & PROFILE

CONSULTING SERVICES, INC.

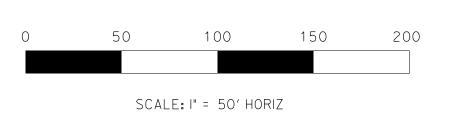

APPROVED BY: B.G.N. DATE: 9/4/15

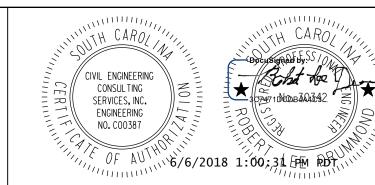
SCALE: I" = 50' HORIZ

OF AUTHOR 1:00;31 PM PDT

SIGN LIGHTING PLAN SHEET STA. 373+00.00 TO STA. 388+00.00

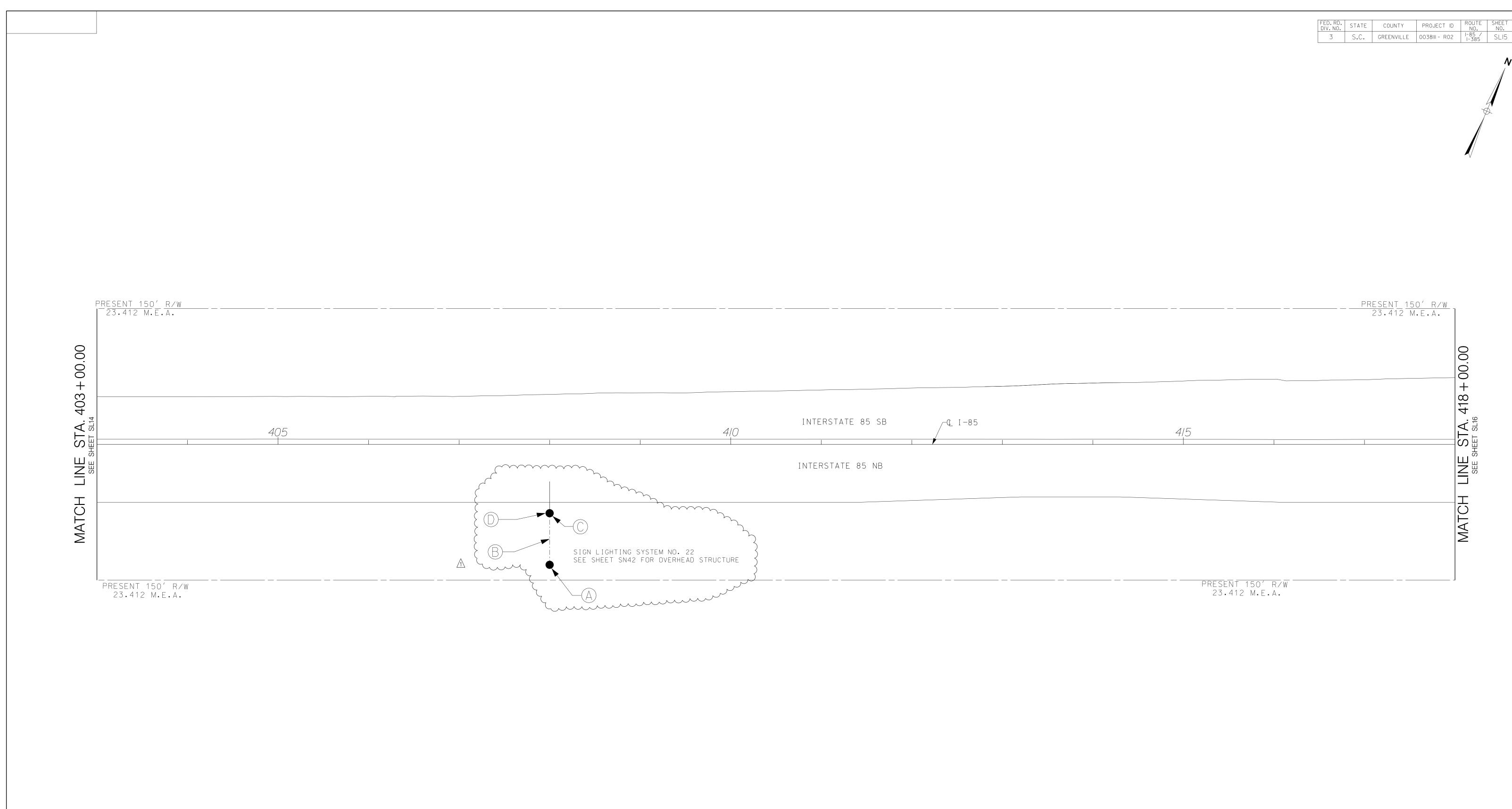
S:\Proj\20||\47||A\Design\Project PIN Number\Traffic\Signing\!NTERCHANGE\SIGN LIGHTING SHEET!


REVISIONS NO. DATE CHECKED DESCRIPTION CHECKED DESCRIPTION DATE DRAWN BY: A.W.F. DATE: 9/4/15 R.L.D. REVISED SOUTHBOUND EDGE LINE B.G.N. REVIEWED BY: D.R.R. DATE: 9/4/15 APPROVED BY: B.G.N. DATE: 9/4/15



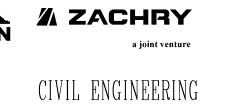
CIVIL ENGINEERING

CONSULTING SERVICES, INC.

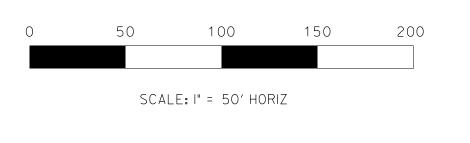


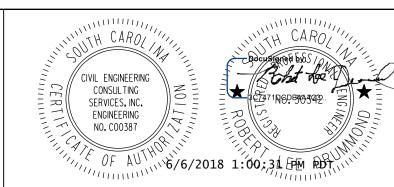
SOUTH	CAROLINA	DEPARTMENT
OF TRA	ANSPORTAT	ION

I-85 / I-385 INTERCHANGE


SCENT

SIGN LIGHTING PLAN SHEET STA. 388+00.00 TO STA. 403+00.00




REVIS	SIONS	DECODIDATION	DV	CHECKED	REVIS	SIONS	DECEDIATION	DV	CHECKED		
NO.	DATE	DESCRIPTION	BY	CHECKED	NO.	DATE	DESCRIPTION	BY	CHECKED	DRAWN BY :	A.W.F. 9/4/I5
\triangle	04/07/16	MOVED SIGN LIGHTING STRUCTURE TO STA.408+00	R.L.D.	B.G.N.						DATE:	9/4/15
<u> </u>	05/02/18	MOVED SIGN LIGHTING STRUCTURE NO.21TO STA.382+50	R.L.D.	B.G.N.						REVIEWED BY : DATE :	D.R.R. 9/4/i5
										APPROVED BY : DATE :	B.G.N. 9/4/I5

CONSULTING SERVICES, INC.

SOUTH CAROLINA	DEPARTMENT
OF TRANSPORTAT	ION

I-85 / I-385 INTERCHANGE

SIGN LIGHTING PLAN SHEET STA.403+00.00 TO STA.418+00.00

SCE

MULTIPLE PANEL SIGNS TO BE MOUNTED ON I-BEAM BREAKAWAY POSTS

ITEMIZED LISTING OF ESTIMATED QUANTITIES

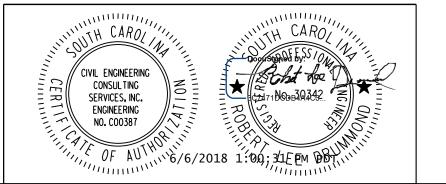
SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

NOTE (3) NOTE (2) NOTE (4) NOTE (1) DISTANCE FROM REFERENCE **POST LENGTH TOTAL STUB TOTAL LENGTH** LBS. OF GRADE (EDGE OF TRAVELWAY) STUB LENGTH **POST STEEL** SIGN STATION P.E.C. SOIL REFLECT-SIGN **EXIT EXIT AREA** SIGN POST **ABOVE SLIP PLATE** OF POST **AREA** TYPE ORIZATION WIDTH - HEIGHT (FEET) (FEET) H/2+MH+L SIZE LENGTH (# POSTS X STUB LGTH) NUMBER **PANEL** (SQ. FEET) POSTS TO GROUND LINE NUMBER **PANEL** NUMBER (H+MH+L-O.25) PER SIGN PER SIGN PER L=LEFT WIDTH **POST** DESIGN (G, A, P) **AREA POSTS** (FEET) L_D= åL_S/ $P_1 + P_2 + P_3 + S$ R=RIGHT (FEET) (SQ FT) (SQ FT) P_2 L_2 # POSTS TYPE III 16.30 W8x21 18.0 6.5 6.00 19.25 Q-1-51C 220+00R 30.0 7.0 22.5 117.00 69.75 Q-1-51C 4.10 5.05 17.35 5.50 11.00 47.60 TYPE III 6.5 Q-2-51C 15.80 W8x18 17.25 20.35 4.75 18.0 4.00 9.50 47.10 Q-2-51C 255+00R 20.0 117.00 58.50 7.10 5.55 7.0 26.25 3.20 22.75 Q-3-51C 70+00R RP 1 TYPE III 21.5 9.0 9.0 22.5 193.50 72.00 Q-3-51C 7.00 10.50 6.90 19.40 W10x22 18.95 5.75 17.25 85.20 1874 18.0 6.5 3.50 9.00 6.25 17.50 | W8x21 | 16.75 22.25 Q-4-51C 62+50R RP 1 TYPE III 22.5 117.00 69.75 Q-4-51C 5.50 11.00 50.00 7.0 9.0 6.5 15.10 W8x21 18.05 5.50 18.0 2.90 4.80 Q-5-51C 361+00L 7.0 TYPE III 9.5 Q-5-51C 3.85 16.15 11.00 45.20 117.00 378+00L Q-6-51C 16.0 TYPE III 21.5 12.0 22.5 258.00 93.50 Q-6-51C 2.86 6.77 5.26 4.96 18.96 W10x26 21.61 25.52 24.01 6.00 18.00 89.14 2318 9.0 54+50L RP 8 TYPE III 12.5 9.5 118.75 59.38 1.60 12.80 | W8x15 | 16.75 17.85 4.50 9.00 43.60 7.0 0.50 1.05 54+50R RP 8 TYPE III 11.5 23.35 14.0 80.50 5.10 15.75 W10x22 19.15 5.75 1188 0.90 11.50 54.00 161.00

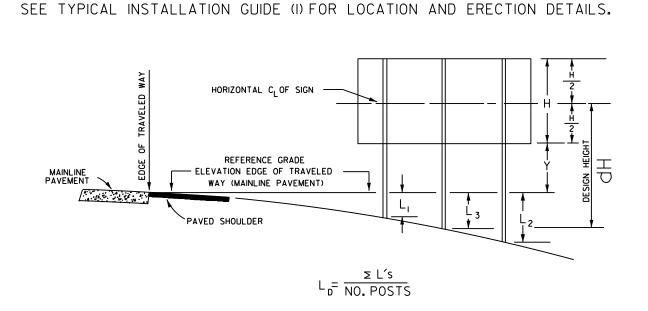
05/02/18 RELOCATED Q-6 AND ADJUSTED POST LENGTHS

R.L.D. B.G.N.

ANY BLANK SPACES UNDER THE BREAKAWAY POST CALCULATIONS, MEANS NO POST REQUIRED.


NOTES:

1) INCLUDES AREA OF EXIT PANEL WHERE APPLICABLE


2) INCLUDES HEIGHT OF EXIT PANEL WHERE APPLICABLE

3) SIZE DENOTES ACTUAL DIMENSIONS OF SIGN TO BE ERECTED

4) AREA DENOTES ACTUAL AREA OF SIGN TO BE ERECTED

FED. RD. DIV. NO. STATE COUNTY PROJECT ID ROUTE NO. NO. 3 S.C. GREENVILLE 0038III - R02 1-85 / I-385 SNI

USE THREE POSTS TO SUPPORT ALL SIGNS HAVING A WIDTH EQUAL TO OR GREATER THAN 18.5 FEET.

MULTIPLE PANEL SIGNS TO BE MOUNTED ON I-BEAM BREAKAWAY POSTS

ITEMIZED LISTING OF ESTIMATED QUANTITIES

SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

FED. RD. STATE COUNTY PROJECT ID ROUTE NO.

3 S.C. GREENVILLE 0038III - R02 I-85 / I-385

						NOTE	E (3)			NOTE (4)		NOTE (1)						NOTE (2)								
															ANCE FRO						T LENG			TOTAL STUB	TOTAL LENGTH	LBS. OF
SIGN	STATION	P.E.C.	M.H.	SOIL	REFLECT-		GN	EXIT	EXIT	AREA	NO.	AREA	SIGN	GRAD	E (EDGE C		•	dH	POST		E SLIP P		STUB	LENGTH	OF POST	POST STEEL
NUMBER	NUMBER L=LEFT	(FEET)	(FEET)	TYPE (G, A, P)	ORIZATION	WIDTH -	· HEIGH I ET)	PANEL WIDTH	PANEL AREA	(SQ. FEET)	POSTS	PER POST	NUMBER		TO GROUPOSTS	UND LINE	DESIGN	H/2+MH+L _D	SIZE	(H+N	MH+L-O.	.25)	LENGTH	(# POSTS X STUB LGTH)	PER SIGN	PER SIGN
	R=RIGHT					(, _	- - ' <i>)</i>	(FEET)	(SQ FT)			(SQ FT)			L ₂	Lą	L _D = åL _S /			P ₁	P ₂	P_3		S	P ₁ + P ₂ + P ₃ +S	
									((,		<u> </u>		<u> </u>	# POSTS			·		J			1 2 3	
LODGING 51A	206+00R I85	25.0	7.0	G	TYPE III	15.0	10.0			150.00	2	75.00	LODGING 51A	3.10	2.80		2.95	14.95	W8x21	19.85	19.55		5.50	11.00	50.40	1058
FOOD 51A	212+50R l85	22.0	7.0	G	TYPE III	15.0	10.0			150.00	2	75.00	FOOD 51A	3.50	2.00		2.75	14.75	W8x21	20.25	18.75		5.50	11.00	50.00	1050
GAS 51A	223+00R I85	30.0	7.0	G	TYPE III	15.0	10.0			150.00	2	75.00	GAS 51A	5.70	8.10		6.90	18.90	W10x22	22.45	24.85		5.75	11.50	58.80	1294
LOGO 51A	252+00R I85NBCD	20.0	7.0	G	TYPE III	9.5	7.5			71.25	2	35.63	LOGO 51A	2.80	3.80		3.30	14.05	W8x10	17.05	18.05		4.00	8.00	43.10	431
LODGING 54	396+00R I85	20.0	7.0	G	TYPE III	15.0	10.0			150.00	2	75.00	LODGING 54	3.50	6.80		5.15	17.15	W10x22	20.25	23.55		5.75	11.50	55.30	1217
FOOD 54	404+00R I85	30.0	7.0	G	TYPE III	15.0	10.0			150.00	2	75.00	FOOD 54	2.10	-2.20		-0.05	11.95	W8x18	18.85	14.55		4.75	9.50	42.90	772
GAS 54	412+00R I85	20.0	7.0	G	TYPE III	15.0	10.0			150.00	2	75.00	GAS 54	2.00	3.50		2.75	14.75	W8x21	18.75	20.25		5.50	11.00	50.00	1050
RAMP LOD 54	56+50R PEL R	22.0	7.0	G	TYPE III	8.5	6.5			55.25	2	27.63	RAMP LOD 54	0.70	0.00		0.35	10.60	W6x9	13.95	13.25		4.00	8.00	35.20	317
RAMP FD 54	58+50R PEL R	22.0	7.0	G	TYPE III	8.5	6.5			55.25	2	27.63	RAMP FD 54	0.80	-0.30		0.25	10.50	W6x9	14.05	12.95		4.00	8.00	35.00	315
RAMP GAS 54	60+50R PEL R	22.0	7.0	G	TYPE III	8.5	6.5			55.25	2	27.63	RAMP GAS 54	0.80	-0.60		0.10	10.35	W6x9	14.05	12.65		4.00	8.00	34.70	312
FOOD 35	317+00R I385	16.0	7.0	G	TYPE III	15.0	10.0			150.00	2	75.00	FOOD 35	1.50	2.80		2.15	14.15	W8x21	18.25	19.55		5.50	11.00	48.80	1025
GAS 35	325+00R I385	22.0	7.0	G	TYPE III	15.0	10.0			150.00	2	75.00	GAS 35	1.80	-2.70		-0.45	11.55	W8x18	18.55	14.05		4.75	9.50	42.10	758
RAMP FD 35	57+00R R11	22.0	7.0	G	TYPE III	8.5	6.5			55.25	2	27.63	RAMP FD 35	2.00	0.80		1.40	11.65	W6x9	15.25	14.05		4.00	8.00	37.30	336
RAMP GAS 35	59+00R R11	22.0	7.0	G	TYPE III	8.5	6.5			55.25	2	27.63	RAMP GAS 35	2.00	0.50		1.25	11.50	W6x9	15.25	13.75		4.00	8.00	37.00	333
G/F/L 34	320+00L I385	25.0	7.0	G	TYPE III	15.0	10.0			150.00	2	75.00	G/F/L 34	2.50	0.60		1.55	13.55	W8x18	19.25	17.35		4.75	9.50	46.10	830
G/F/L 35	420+00L 1385	25.0	7.0	G	TYPE III	15.0	10.0			150.00	2	75.00	G/F/L 35	0.50	1.30		0.90	12.90	W8x18	17.25	18.05		4.75	9.50	44.80	806
R2-4a-48-60/45	388+10R I85	20.0	5.0	G	TYPE III	4.0	8.0			32.00	2	16.00	R2-4a-48-60/45	2.30	2.70		2.50	11.50	S4x7.7	15.05	15.45		4.00	8.00	38.50	296
R2-4a-48-60/45	198+00L l85	20.0	5.0	G	TYPE III	4.0	8.0			32.00	2	16.00	R2-4a-48-60/45	0.40	0.60		0.50	9.50	S3x5.7	13.15	13.35		4.00	8.00	34.50	197
R2-4a-48-65/45	313+00L I385	20.0	5.0	G	TYPE III	4.0	8.0			32.00	2	16.00	R2-4a-48-65/45	1.80	2.50		2.15	11.15	S3x5.7	14.55	15.25		4.00	8.00	37.80	215
R2-4a-48-55/45	313+00R I385	20.0	5.0	G	TYPE III	4.0	8.0			32.00	2	16.00	R2-4a-48-55/45	2.30	2.90		2.60	11.60	S4x7.7	15.05	15.65		4.00	8.00	38.70	298

6520200 TOTAL

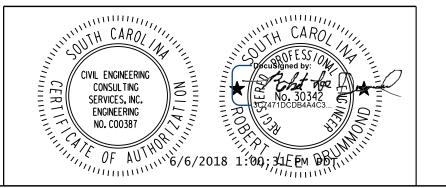
6541005 TOTAL

ADJUSTED PEC AND POSTS FOR R2-4a-48-60/45 AT STA.395+00L I-85 R.L.D. B.G.N.

05/02/18 REMOVED R2-4a-48-60/45 AT STA.395+00L 185

R.L.D. B.G.N.

ANY BLANK SPACES UNDER THE BREAKAWAY POST CALCULATIONS, MEANS <u>NO POST REQUIRED.</u> * SIGN TO BE MOUNTED ON WALL, USE PAYITEM NO. 6513000


NOTES:

1) INCLUDES AREA OF EXIT PANEL WHERE APPLICABLE

2) INCLUDES HEIGHT OF EXIT PANEL WHERE APPLICABLE

3) SIZE DENOTES ACTUAL DIMENSIONS OF SIGN TO BE ERECTED

4) AREA DENOTES ACTUAL AREA OF SIGN TO BE ERECTED

SEE TYPICAL INSTALLATION GUIDE (1) FOR LOCATION AND ERECTION DETAILS. HORIZONTAL CLOF SIGN -REFERENCE GRADE

ELEVATION EDGE OF TRAVELED
WAY (MAINLINE PAVEMENT)

USE THREE POSTS TO SUPPORT ALL SIGNS HAVING A WIDTH EQUAL TO OR GREATER THAN 18.5 FEET.

ED. RD. STATE COUNTY PROJECT ID ROUTE NO.

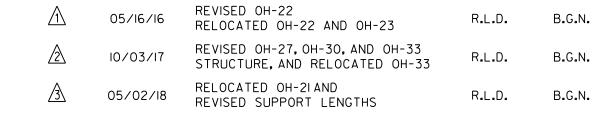
3 S.C. GREENVILLE 0038III - R02 I-85 / SN5

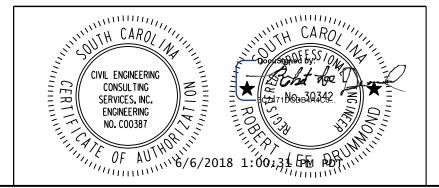
ITEMIZED LISTING OF ESTIMATED QUANTITIES

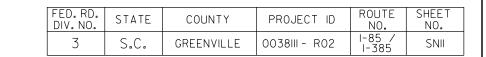
SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

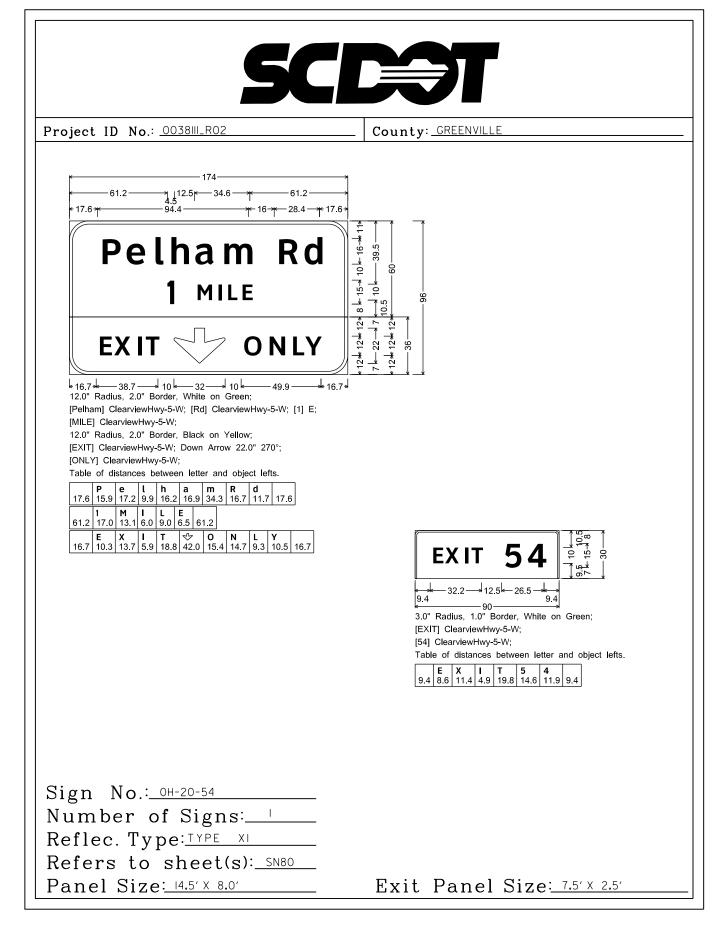
OVERHEAD STRUCTURE NUMBER	STATION LOCATION	QUANTITY	TYPE	SPAN LENGTH (FT)	(FT) (GR LOWEST H	TS LENGTH COUND TO IORIZONTAL MBER)	FOOTING REQUIRED FOR THIS BID ITEM	SIGNS SUPPORTE
					LEFT	RIGHT		
OH-18	360+00	1	CANTILEVER	35.00	_	22.21	1	OH-18
OH-19	371+50	1	SIGN BRIDGE	87.82	16.21	20.62	2	OH-19
OH-20	377+00	1	CANTILEVER	34.78	_	21.25	1	OH-20
OH-21	382+50	1	SIGN BRIDGE	75.91	17.20	19.74	2	OH-21
OH-22	408+00	1	CANTILEVER	35.00	_	20.17	1	OH-22
OH-23	427+35	1	SIGN BRIDGE	87.86	15.41	20.83	2	OH-23A, OH-23B
OH-24	445+00	1	CANTILEVER	34.50	_	17.99	1	OH-24
OH-27	306+00	1	SIGN BRIDGE	83.43	15.59	19.31	2	OH-27
OH-28	315+00	1	CANTILEVER	34.00	-	19.78		OH-28
OH-30	327+50	1	SIGN BRIDGE	89.17	14.83	22.02	2	OH-30
OH-31	328+00	1	BRIDGE MOUNT	-	-		-	OH-31
OH-31	336+50	1	CANTILEVER	35.00	-	20.57	1	OH-31
OH-33	344+65	1	SIGN BRIDGE	69.42	14.61	11.69	2	OH-32
OH-34	105+75	1	CANTILEVER	45.00	14.61	19.65	1	OH-34
OH-35	375+00	1	CANTILEVER	36.50	13.74	19.00	1	OH-35A, OH-35B
OH-35	41+25	1	CANTILEVER	45.00	14.75		1	
OU-90	41720		CANTILEVER	40.00	14./0	6573100	TOTAL	OH-36A, OH-36B 16
65 OH-29	5 7310 3	B REI	LOCATIO BUTTERFLY	N OF	OVER	HEAD	STRUC	TURE OH-29

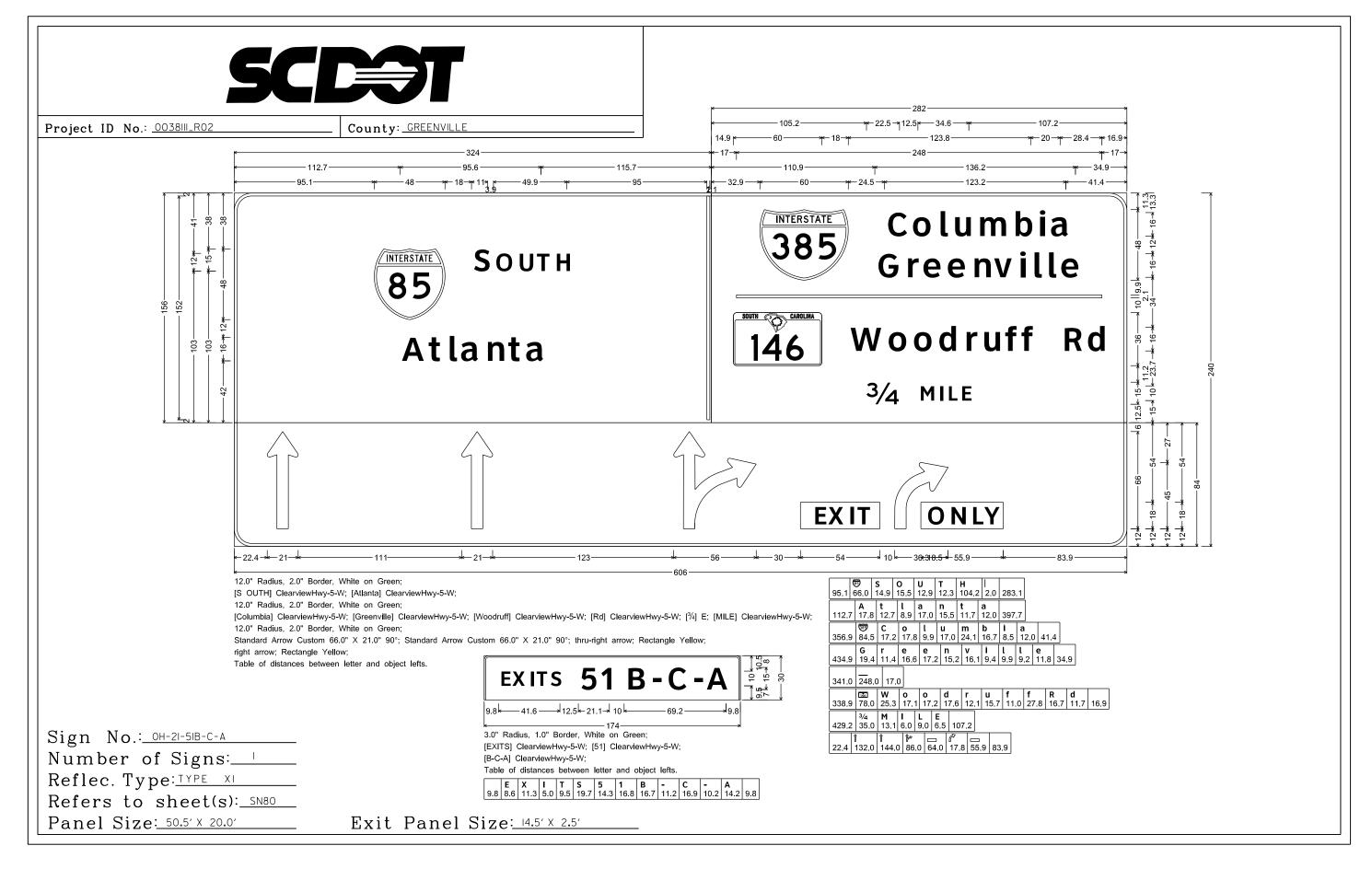
SIGN NUMBER MOUNTED ON ORRESPONDING STRUCTURE NO.	SIGN SURFACE TYPE	SIG WIDTH (F		IEIGHT	AREA (SQ. FT.)	QUANTITY	TOTAL AREA (SQ. FT.)
OH-18	TYPE XI	14	X	7.5	105.00	1	105.00
OH-19-51B-C-A	TYPE XI	59	X	20	1180.00	1	1180.00
OH-20-54	TYPE XI	14.5	X	8	116.00	1	116.00
OH-21-51B-C-A	TYPE XI	50.5	X	20	1010.00	1	1010.00
OH-22-54	TYPE XI	15	X	6.5	97.50	1	97.50
OH-23A	TYPE XI	24.5	X	10.5	257.25	1	257.25
OH-23B-54	TYPE XI	16.5	X	6.5	107.25	1	107.25
OH-24-51B-C-A	TYPE XI	23.5	X	13	305.50	1	305.50
H-25A-35 & 36A-B	TYPE XI	24	X	14	336.00	1	336.00
OH-25B-34	TYPE XI	12	X	6	72.00	1	72.00
OH-26A-33	TVDE VI				TO BE RET		402.05
OH-26B-34 OH-27-35 & 36A-B	TYPE XI	14.5 50.5	X	8.5 20	123.25 1010.00	1	123.25 1010.00
OH-27-35 & 36A-B OH-28-36A	TYPE XI		X	12.5		1	
OH-28-36A OH-29	ITPE XI	18			225.00 N TO BE RET	_	225.00
OH-29 OH-30-35 & 36A-B	TYPE XI	59	X	17	1003.00	AINED 1	1003.00
ОН-31-34	TYPE XI	14.5	X	10.5	152.25	1	152.25
OH-32	TYPE XI	14.5	X	7.5	105.00	1	105.00
OH-33-35 & 36A-B	TYPE XI	39		18.5	721.50	1	721.50
OH-34-35	TYPE XI	32	X	12.5	400.00	1	400.00
OH-35A-36B	TYPE XI	14	X	10	140.00	1	140.00
OH-35B-36A	TYPE XI	21.5	X	13	279.50	1	279.50
OH-36A-36B	TYPE XI	17	X	8	136.00	1	136.00
OH-36B-36A	TYPE XI	21.5	X	13.5	290.25	1	290.25
				652	0250	TOTAL	8067.25

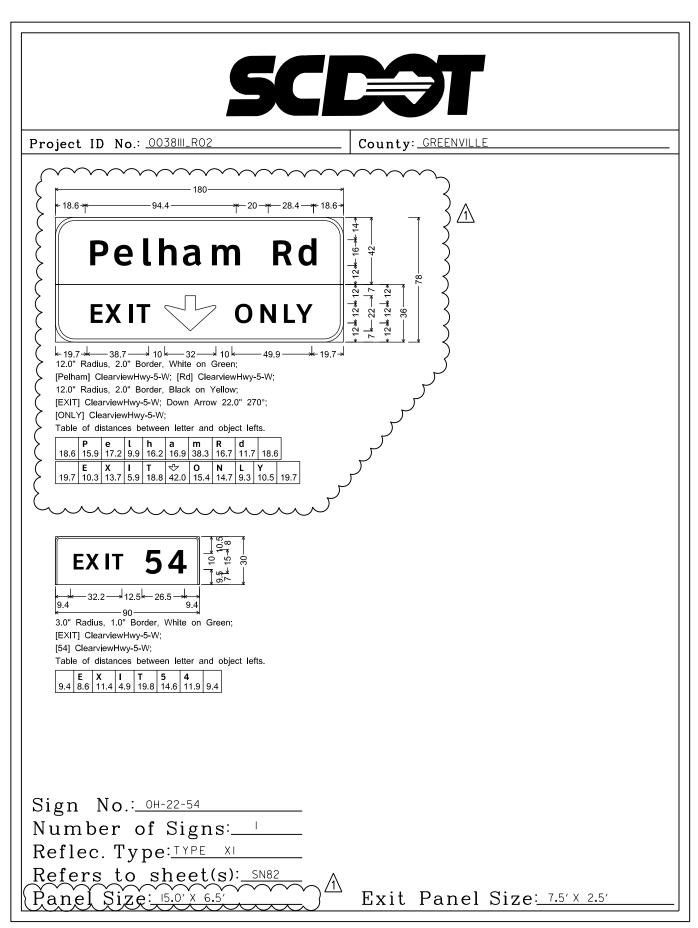

SIGN NUMBER MOUNTED ON	SIGN SURFACE		SN S		AREA		ТОТА
CORRESPONDING	TYPE	WIDTH			(SQ. FT.)	QUANTITY	AREA
STRUCTURE NO.		(F	EE.	Γ)	(00.11.)		(SQ. F
OH-19-51B-C-A	TYPE XI	14.5	X	2.5	36.25	1	36.25
OH-20-54	TYPE XI	7.5	Х	2.5	18.75	1	18.75
OH-21-51B-C-A	TYPE XI	14.5	Х	2.5	36.25	1	36.25
OH-22-54	TYPE XI	7.5	Х	2.5	18.75	1	18.75
OH-23B-54	TYPE XI	7.5	Х	2.5	18.75	1	18.75
OH-24-51B-C-A	TYPE XI	14.5	Х	2.5	36.25	1	36.25
OH-25A-35 & 36A-B	TYPE XI	17.5	X	2.5	43.75	1	43.75
OH-25B-34	TYPE XI	7.5	X	2.5	18.75	1	18.75
OH-26B-34	TYPE XI	7.5	Х	2.5	18.75	1	18.75
OH-27-35 & 36A-B	TYPE XI	17.5	X	2.5	43.75	1	43.75
OH-28-36A	TYPE XI	9.5	X	2.5	23.75	1	23.75
OH-30-35 & 36A-B	TYPE XI	17.5	X	2.5	43.75	1	43.75
OH-31-34	TYPE XI	7.5	Х	2.5	18.75	1	18.75
OH-33-35	TYPE XI	7.5	Х	2.5	43.75	1	43.75
OH-33-36A-B	TYPE XI	12.5	Х	2.5	18.75	1	18.75
OH-34-35	TYPE XI	7.5	Х	2.5	18.75	1	18.75
OH-35A-36B	TYPE XI	9.5	Х	4.5	42.75	1	42.75
OH-35B-36A	TYPE XI	9.5	Х	2.5	23.75	1	23.75
OH-36A-36B	TYPE XI	9.5	X	4.5	42.75	1	42.75
OH-36B-36A	TYPE XI	9.5	Х	2.5	23.75	1	23.75
		†					
		1					
		1					
				652	20250	TOTAL	590.5
BF	OVERH RIDGE MOU				WIRE & SHEET		
			_				

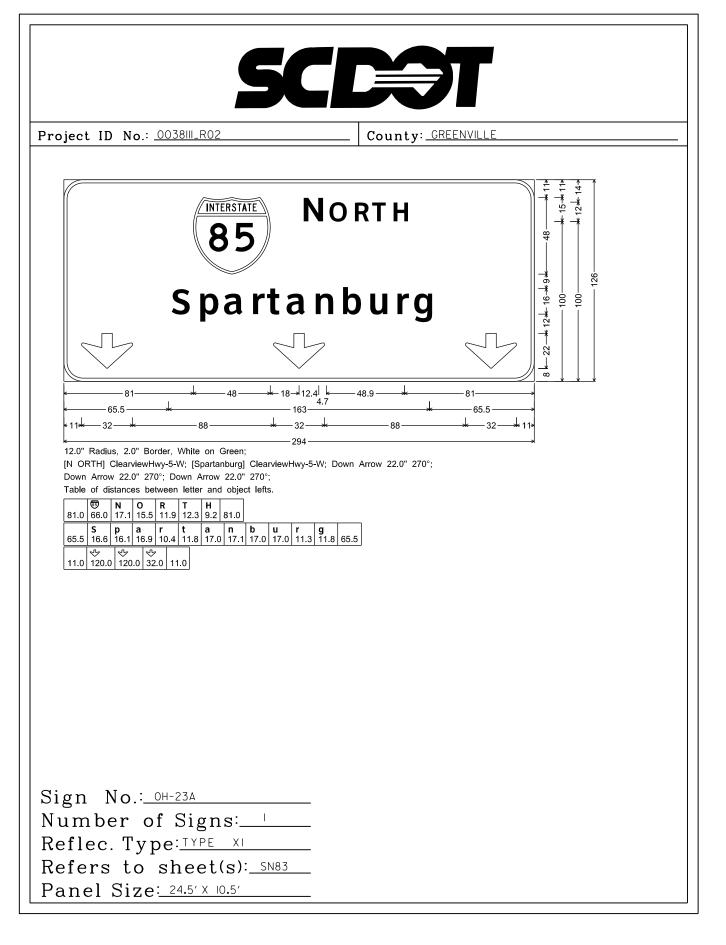

SI	GN L	IGHTING	SYS	TEMS
BID I	TEM NO.	SYSTEM NO.	SEE PLAN SHEET NO.	QUANTITY
65	73200	OH-18	SL12	1
	7 0200	OH-19	SL12	1
		OH-20	SL13	1
		OH-21	SL15	1
		OH-22	SL15	1
		OH-23	SL16	1
		OH-24	SL17	1
		OH-27	SL18	1
		OH-28	SL19	1
		OH-30	SL20	1
		OH-31	SL20	1
		OH-32	SL20	1
		OH-33	SL21	1
		OH-34	SL23	1
		OH-35	SL23	1
		OH-36	SL23	1
		1		
			1	

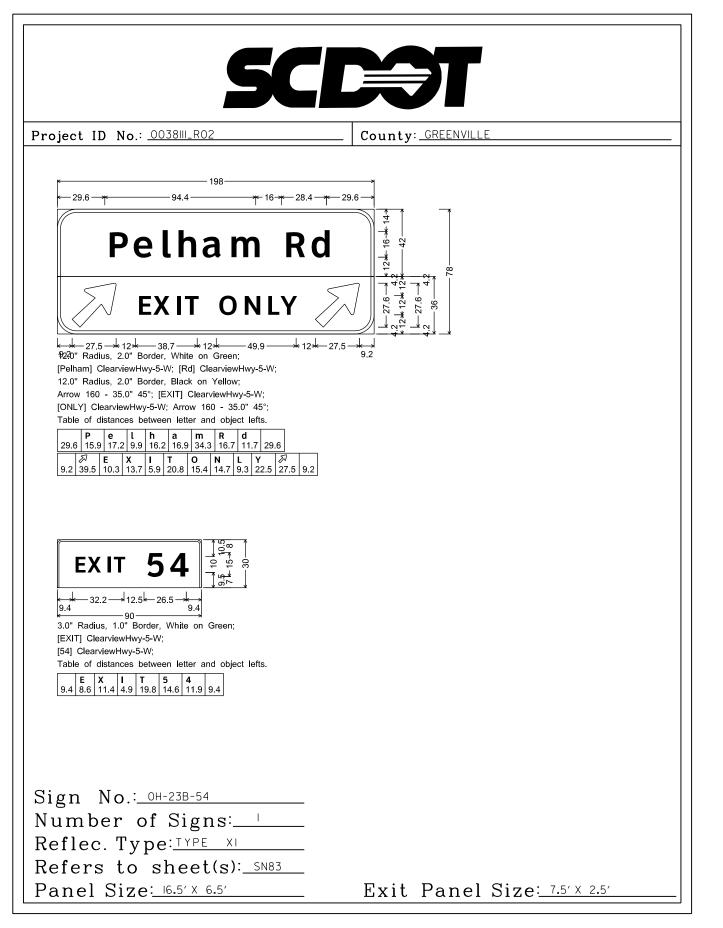

SIGN LIGHTING NOTES:

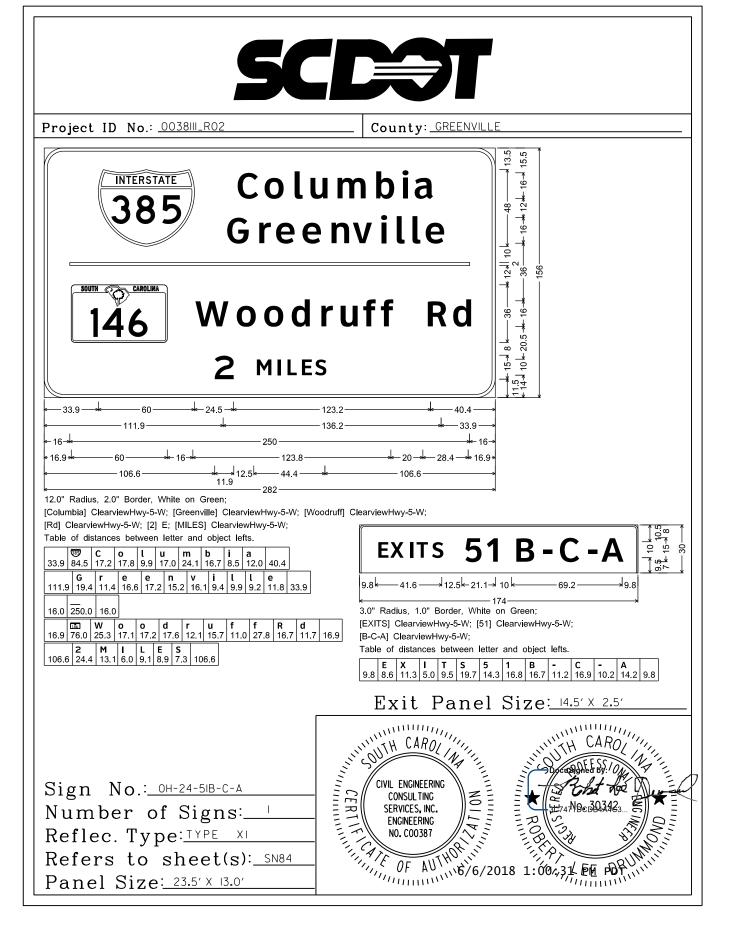

6573200 TOTAL


SEE SPECIAL PROVISIONS FOR SUPPLEMENTAL
 SPECIFICATIONS FOR SIGN LIGHTING SYSTEMS AND WORK TO BE DONE
 SEE SHEETS NUMBERED ADJACENT TO SYSTEM NUMBER FOR GENERAL
 DETAILS OF REQUIREMENTS FOR EACH SYSTEM. 3. NUMBERING OF EACH
 SIGN LIGHTING SYSTEM CORRESPONDS TO THE NUMBER ON WHICH THE
 SYSTEM IS TO BE INSTALLED









05/16/16 ADJUSTED OVERHEAD SIGN #22

05/02/18 REVISED OVERHEAD OH-21-51B-C-A R.L.D. B.G.N.

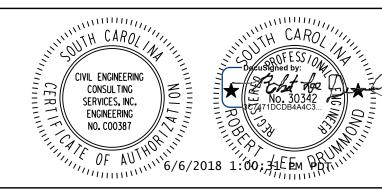
10.16′ 15.24 OH-2I-5IB-C-A EXITS 51 B-C-A 385 Columbia NTERSTATE 85 South Greenville Woodruff Rd Atlanta 3/4 MILE GLARE SCREEN TO BE PROVIDED BETWEEN EXIT ONLY TOP OF WALKWAY AND BOTTOM OF SIGN 17.5' MINIMUM CLEARANCE 10'

> OVERHEAD STRUCTURE NO. 21 INTERSTATE 85 SOUTHBOUND STA. 382+50.00 SHEET SN80

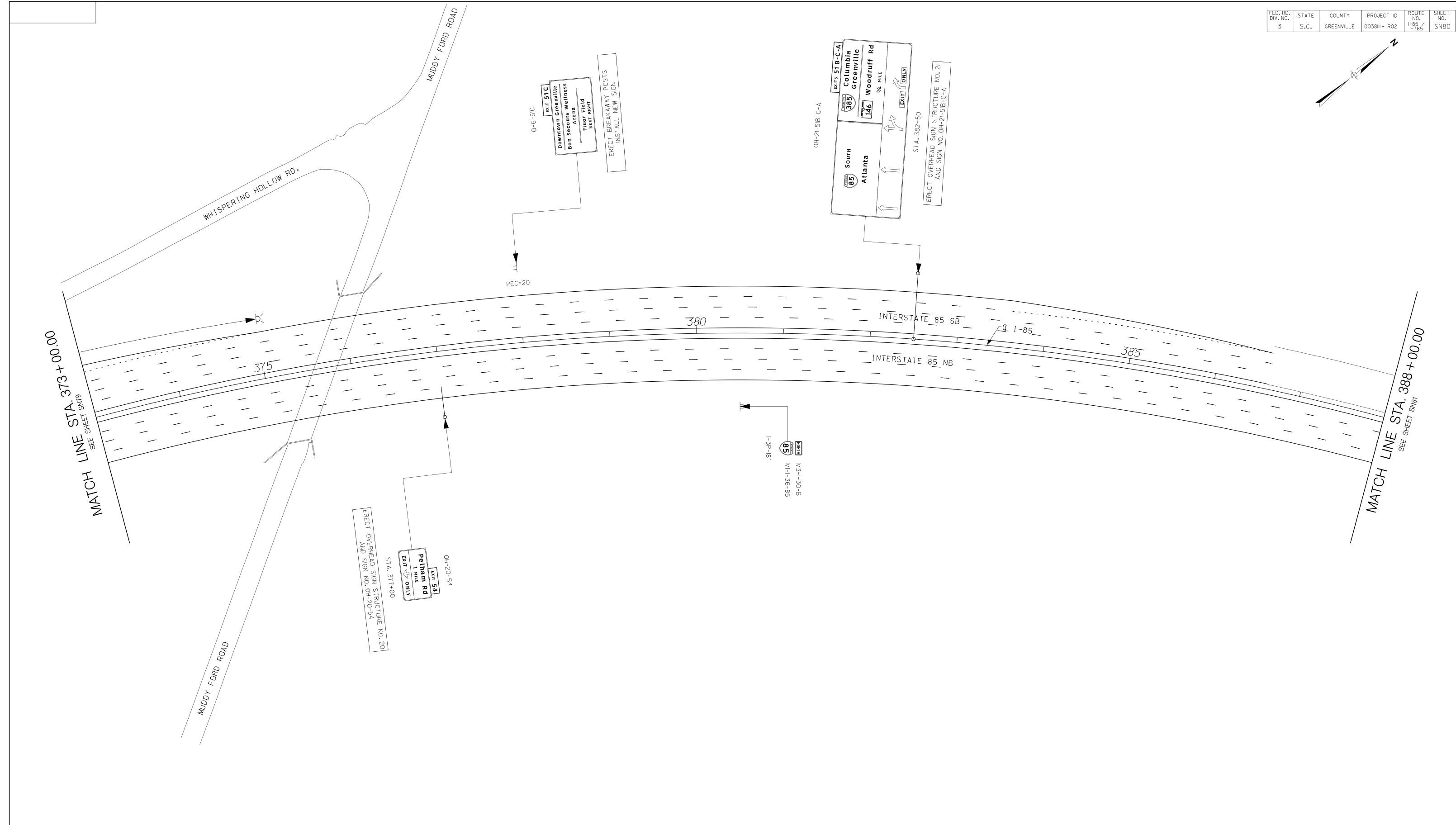
*BASED ON 17.5' ROADWAY CLEARANCE NOTE: DESIGN WIND SPEED = 90 MPH *FOR DESIGN OF FOOTING USE

2,000 PSIMAX TOE PRESSURE

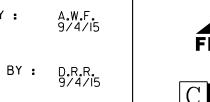
REVIS	SIONS	DESCRIPTION	DV	CHECKED	REVIS	SIONS	DESCRIPTION	DV	CHECKED		
NO.	DATE	DESCRIPTION	BY	CHECKED	NO.	DATE	DESCRIPTION	BY	CHECKED	DRAWN BY :	A.W.F. 9/4/15
\triangle	05/02/18	MOVED OH-21FROM STA.404+00 TO STA.382+50	R.L.D.	B.G.N.						DATE :	9/4/15
										REVIEWED BY : DATE :	D.R.R. 9/4/I5
										APPROVED BY :	B.G.N. 9/4/I5
1										DATE :	3/4/15



CIVIL ENGINEERING CONSULTING SERVICES, INC.

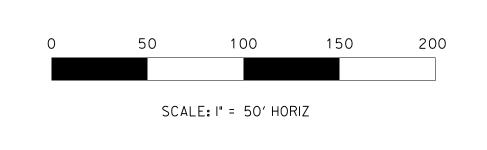

SOUTH CAROLINA DEPARTMENT
OF TRANSPORTATION

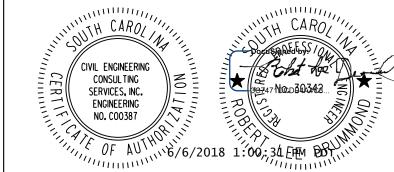
I-85 / I-385 INTERCHANGE


SIGNING PLANS

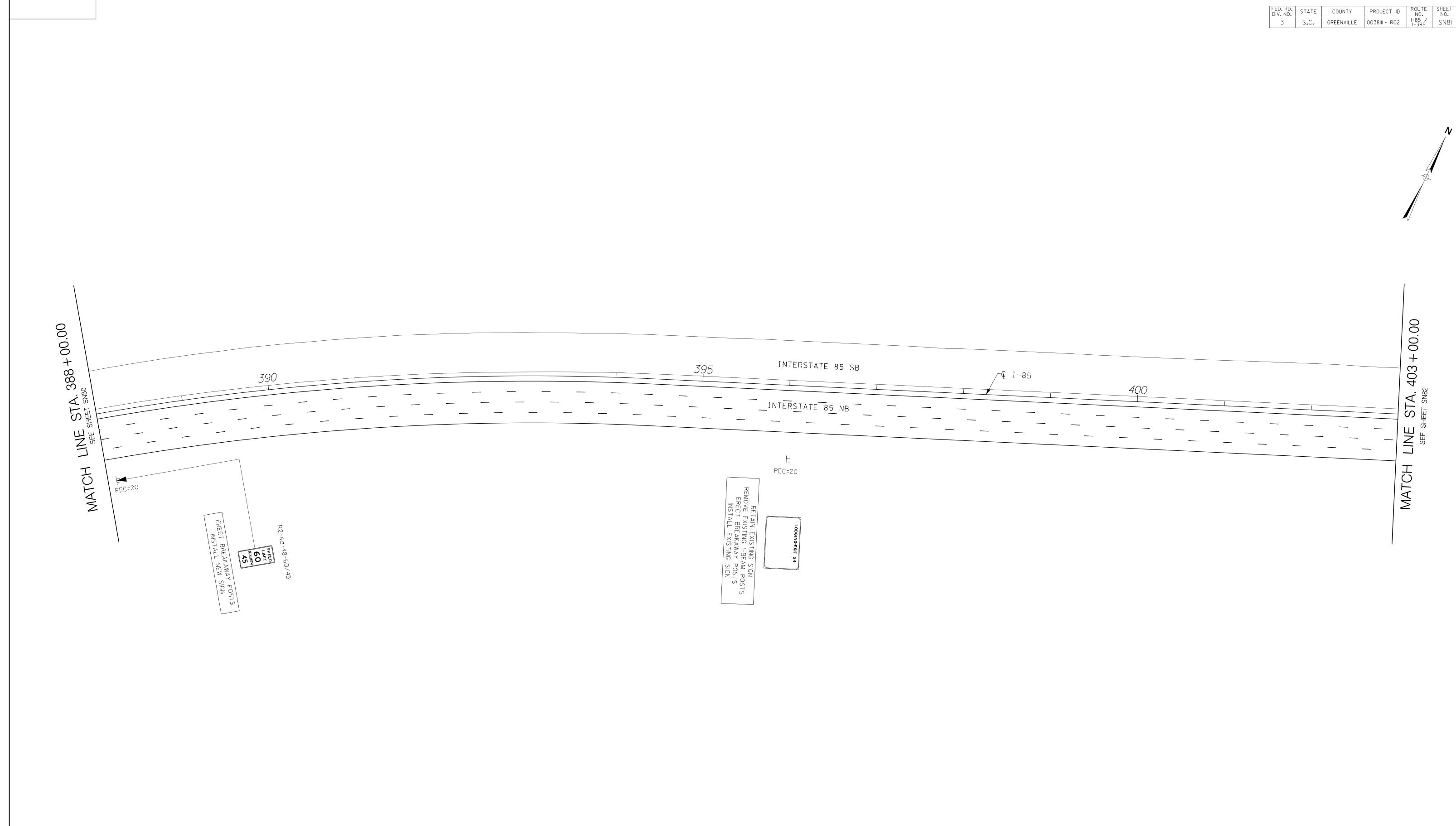
4711A\Design\Project PIN Number\Traffic\Signing\INTERCHANGE\SIGN SHEETS\SNO41_XS_OH-21.dgn

SCENT RCHANGE




1/1/2	10143	DESCRIPTION	BY	CHECKED	INL VIS	10143	DESCRIPTION	BY	CHECKED		
NO.	DATE	DESCRIP HON	ы	CHECKED	NO.	DATE	DESCRIPTION	ום	CHECKED	DRAWN BY :	A.W.F. 9/4/15
\triangle	05/04/17	REVISED Q-6	R.L.D.	B.G.N.						DATE :	9/4/15
<u> </u>	05/02/18	RELOCATED AND REVISED OH-21, RELOCATED Q-6	R.L.D.	B.G.N.						REVIEWED BY : DATE :	D.R.R. 9/4/I5
										APPROVED BY :	B.G.N. 9/4/15
										DATE :	9/4/15

CONSULTING SERVICES, INC.



SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

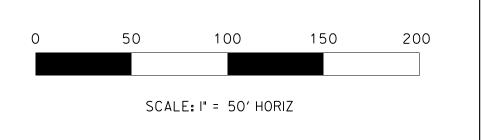
I-85 / I-385 INTERCHANGE

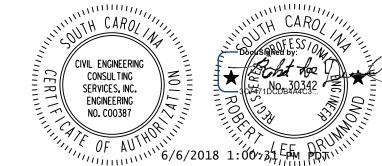
SCD

SIGNING PLAN SHEET STA. 373+00.00 TO STA. 388+00.00

REVISIONO.

CHECKED DESCRIPTION CHECKED DESCRIPTION DRAWN BY : Date : DATE A.W.F. 9/4/15 R.L.D. B.G.N. 05/16/16 CHANGED PEC AT STA.395+00L REMOVED R2-4a-48-60/45 AT STA.395+00 REVIEWED BY: D.R.R. DATE: 9/4/15 R.L.D. B.G.N. APPROVED BY: B.G.N. DATE: 9/4/15

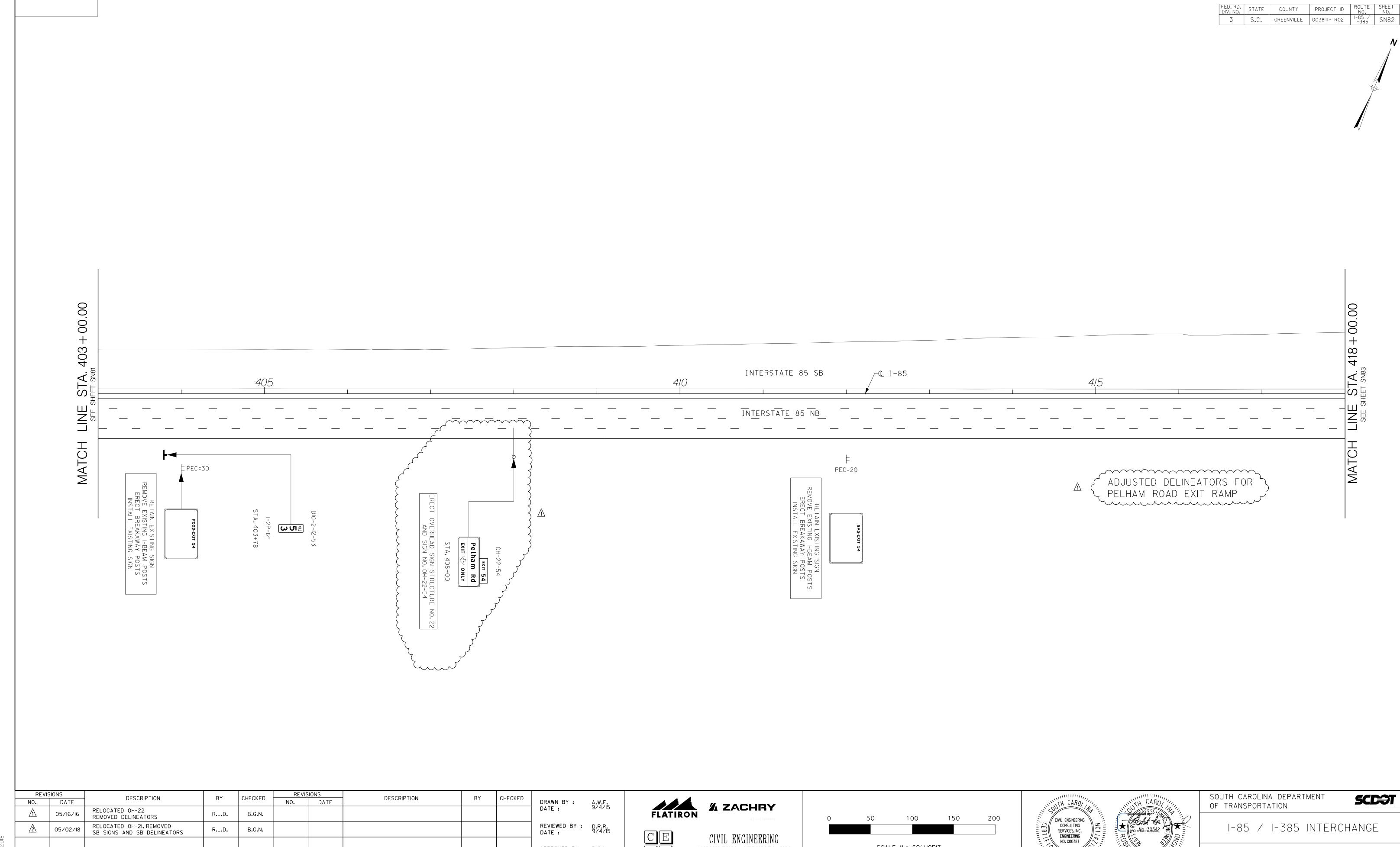



FLATIRON

A ZACHRY

CIVIL ENGINEERING

CONSULTING SERVICES, INC.



SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

I-85 / I-385 INTERCHANGE

SCD

SIGNING PLAN SHEET STA. 388+00.00 TO STA. 403+00.00

CIVIL ENGINEERING

CONSULTING SERVICES, INC.

APPROVED BY: B.G.N. DATE: 9/4/15

SCALE: I" = 50' HORIZ

SIGNING PLAN SHEET

STA. 403+00.00 TO STA. 418+00.00

(1) 6/6/2018 1:00; 34 EFFM POT

R.L.D.

B.G.N.

) 		
	BLW	
	CEO BL	
	TH OF INTERCHANGE 85SB END WIDENING STA. REVISED TO 386+60	
	IDENING STA. I	
- 2C	85SB END WID	
TED TO ADD STEP 2A - 2C	HANGE 85	

FED. RD. DIV. NO.	STATE	COUNTY	PROJECT ID	ROUTE NO.	SHEET NO.
3	S.C.	GREENVILLE	0038111 - R02	I-85 I-385	TC3

SERIES 4 SHEETS

EP 1: SHEETS TC4.1 – 4.1A

 PREPARE EX 85NB/SB OUTSIDE SHOULDERS FOR STEP 2 I-85 MEDIAN BENT WORK (85NB STA. 279+00 TO 293+40 & 85SB STA. 280+00 TO 303+50).

SHEETS TC4.2 – 4.2P

<u>I-85 WIDENING SOUTH OF INTERCHANGE</u> (TC4.2 – 4.2D)

• SHIFT 85NB/SB TRAFFIC TO THE INSIDE, AND COMPLETE OUTSIDE WIDENING (85NB STA. 203+00 TO 249+13 & 85SB STA. 211+80 TO 268+00).

CONCURRENT CONSTRUCTION:

- **R5 STEP 1** (TC14.1)
- **R5 STEP 2** (TC14.2)

<u>I-85 MEDIAN BENTS</u> (TC4.2E – 4.2G)

• SHIFT 85NB/SB TRAFFIC TO OUTSIDE SHOULDERS. WITH 85 TRAFFIC ON OUTSIDE SHOULDERS, COMPLETE MEDIAN BRIDGE BENTS (BR5 BENT 7, BR7 BENT 2, BR8 BENT 2, BR9 BENT 3, BR12 BENT 4).

<u>I-85 WIDENING NORTH OF INTERCHANGE</u> (TC4.2G – 4.2Q)

• SHIFT 85NB/SB TRAFFIC TO THE INSIDE, AND COMPLETE OUTSIDE WIDENING OF 85 TOWARDS PELHAM RD (85NB STA. 304+00 TO 428+25 & 85SB STA. 302+50 TO 386+60).

CONCURRENT CONSTRUCTION:

- R1
- R1A
- CHROME DR.
- CONSTRUCT WALLS ALONG 85 NEAR ROCKY CREEK.
- SHIFT PELHAM EXIT RAMP TRAFFIC TO THE INSIDE AND COMPLETE TEMP. PELHAM AND OUTSIDE WIDENING (PELHAM STA. 54+79 TO 61+25).

P 2A: SHEETS TC4.2AA – 4.2AC

 COMPLETE 85NB OUTSIDE WIDENING (85NB STA. 415+50 TO 428+20). SHIFT PELHAM EXIT RAMP TRAFFIC TO THE OUTSIDE (TEMP. PELHAM) AND COMPLETE 85NB/PELHAM GORE AREA, TEMP PVMT, AND PELHAM LEFT SIDE.

STEP 2B: SHEETS TC4.2BA – 4.2BC

• SHIFT PELHAM EXIT RAMP TRAFFIC TO THE INSIDE/TEMP PVMT AND COMPLETE PELHAM RIGHT SIDE (PELHAM STA. 50+00 TO 54+79).

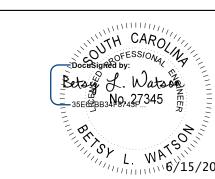
*UPON SWITCHING TRAFFIC TO THE LEFT SIDE OF PELHAM RAMP, WORK IN A CONTINUOUS AND EXPEDITIOUS MANNER TO BREAK UP AND REMOVE EXISTING RAMP PAVEMENT ON THE RIGHT SIDE SUCH THAT WATER ENTRAPMENT DOES NOT OCCUR.

STEP 2C: SHEETS TC4.2CA – 4.2CH

- SHIFT 85NB/SB TRAFFIC TO THE OUTSIDE, AND COMPLETE MEDIAN FOUNDATIONS FOR OVERHEAD SIGN STRUCTURES AND MEDIAN DRAINAGE WORK (85 STA. 350+60 TO 428+50).
- REMOVE TEMP PVMT ALONG LEFT SIDE PELHAM (PELHAM STA. 53+88 TO 57+00).

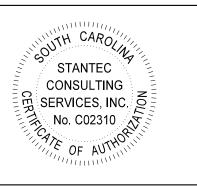
STEP 3: SHEETS TC4.3 – 4.3B

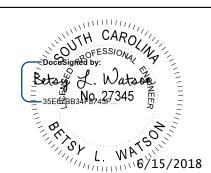
- UPON COMPLETION OF MEDIAN BENT WORK, REMOVE TEMP BARRIER, REVISE PVMT MARKINGS, AND SHIFT 85NB/SB OFF OF OUTSIDE SHOULDERS.
- REVISE 85NBCD MARKINGS AT ENTRANCE RAMP TO 85NB AND COMPLETE 85/85NBCD OUTSIDE WIDENING (STA. 295+00 TO 301+50).


PREREQUISITE CONSTRUCTION:

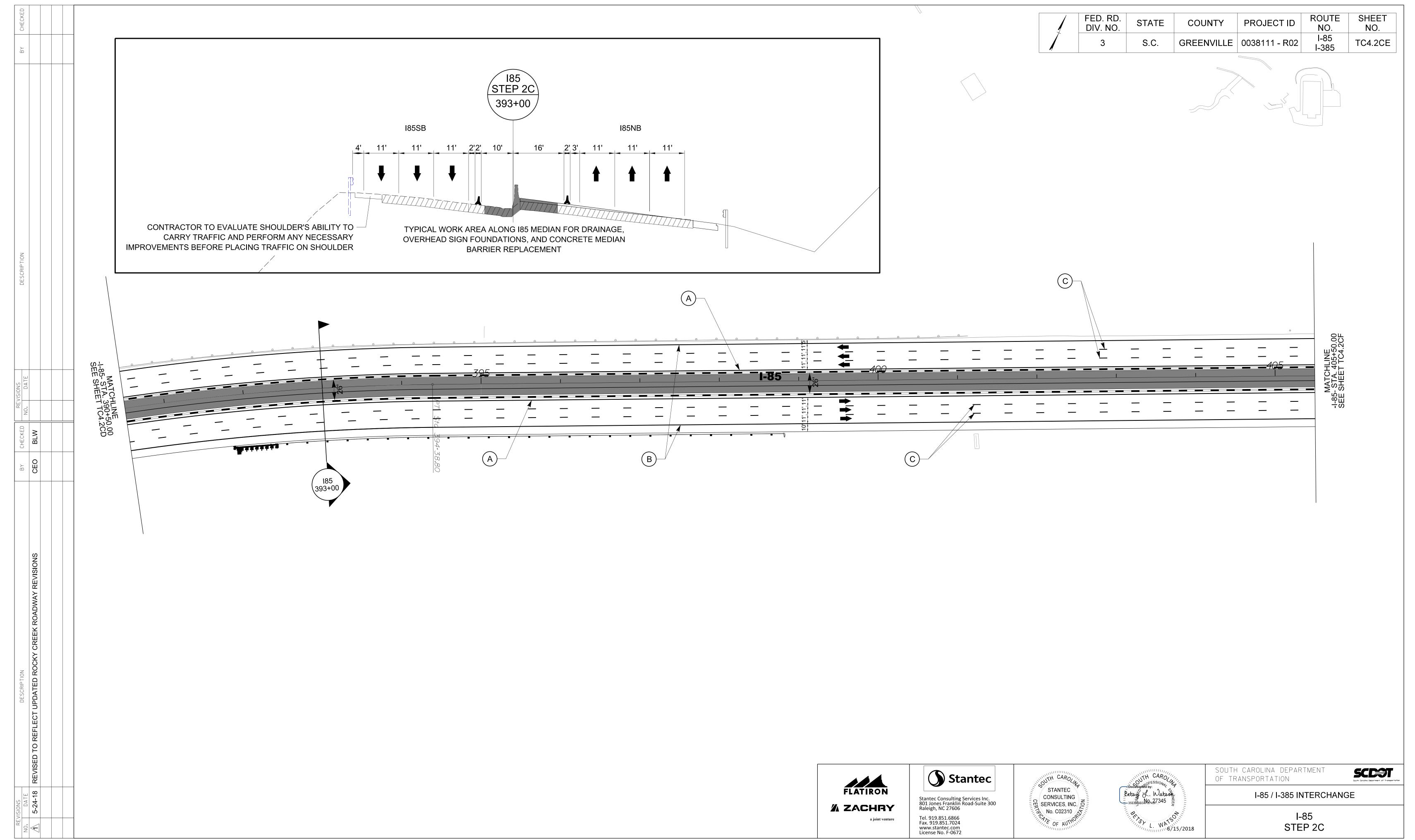
- **85NBCD STEP 3** (TC5.3)
- R2A/R4 STEP 3 (TC9.3)

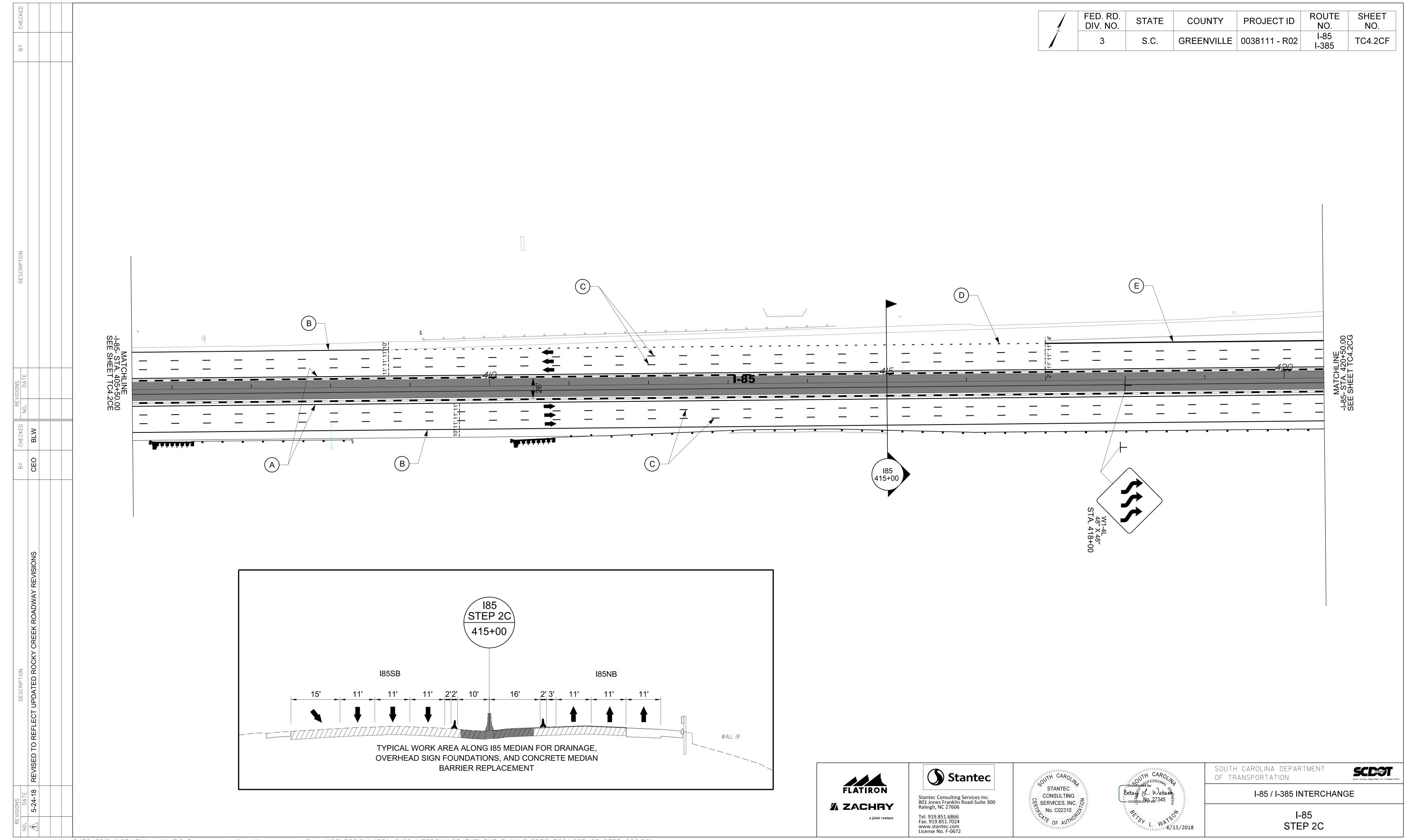
SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

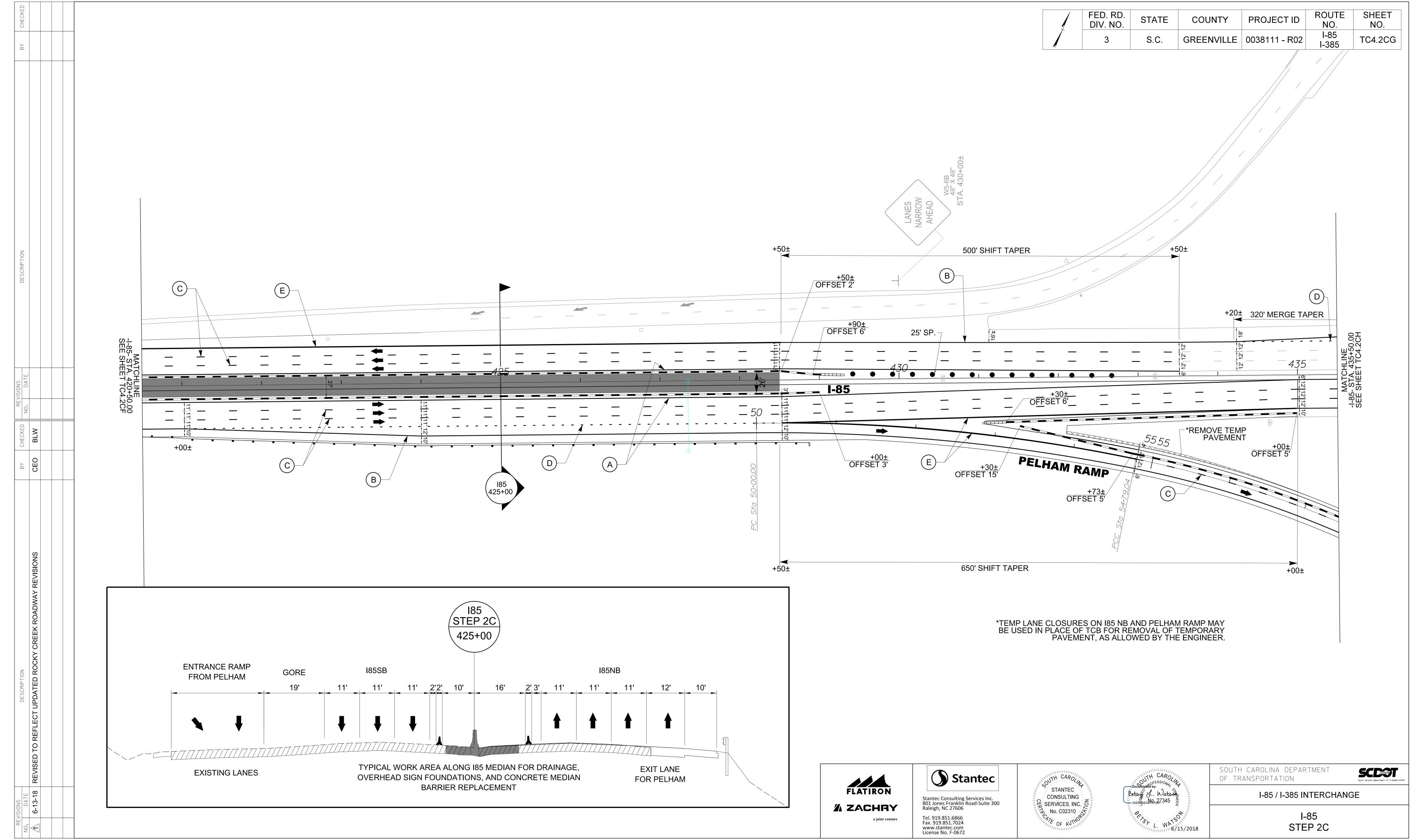

I-85 / I-385 INTERCHANGE

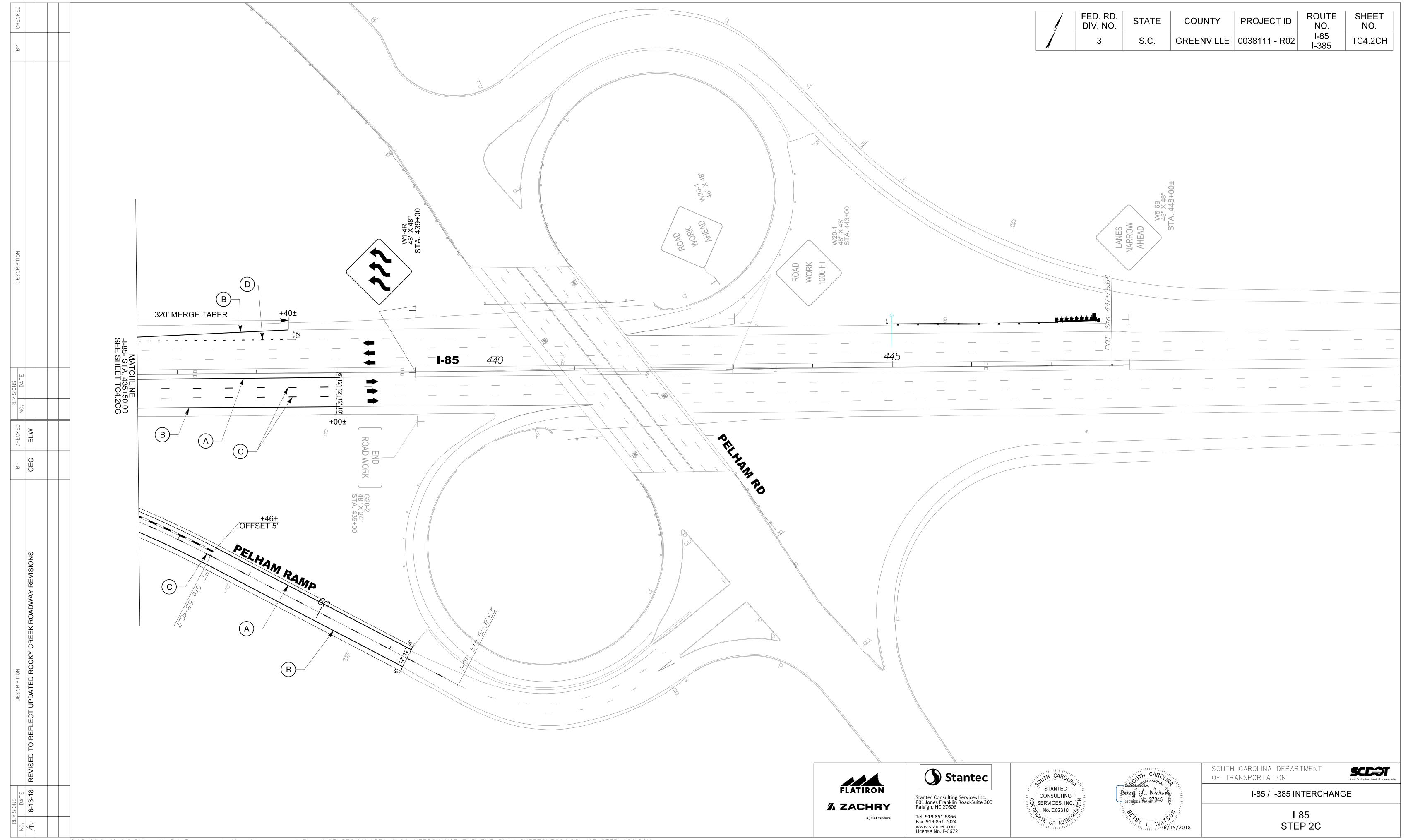

STAGING NARRATIVE

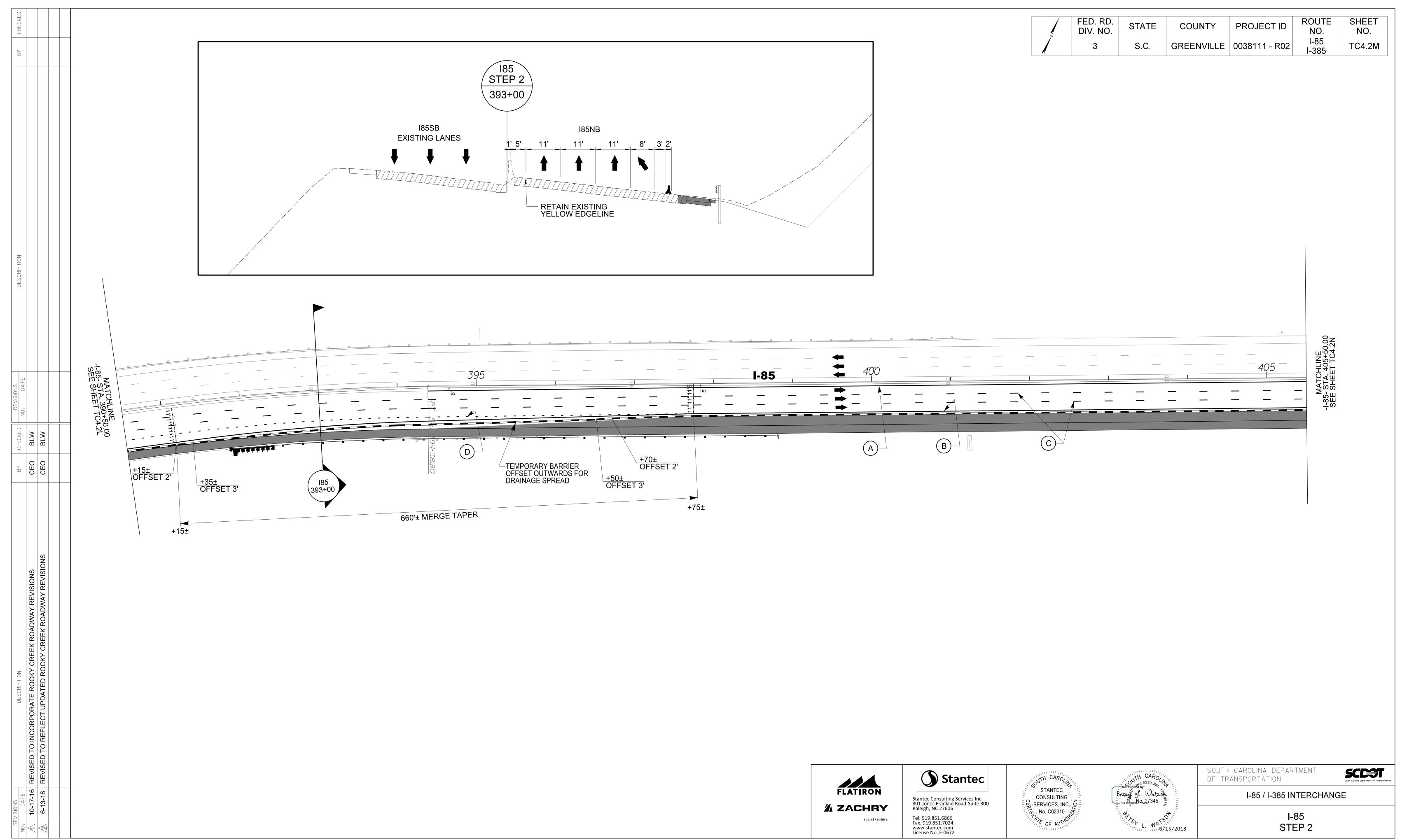
SCE

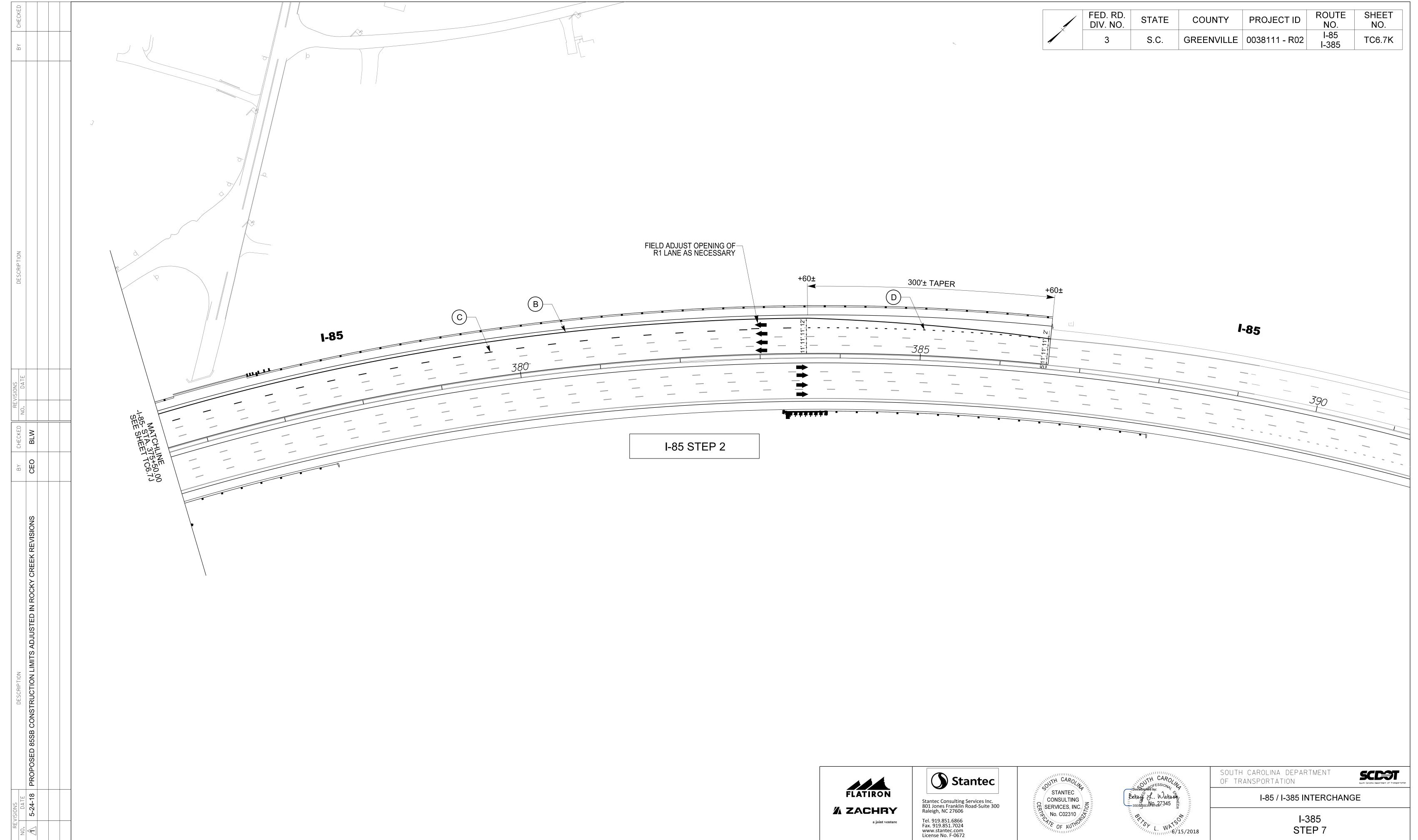


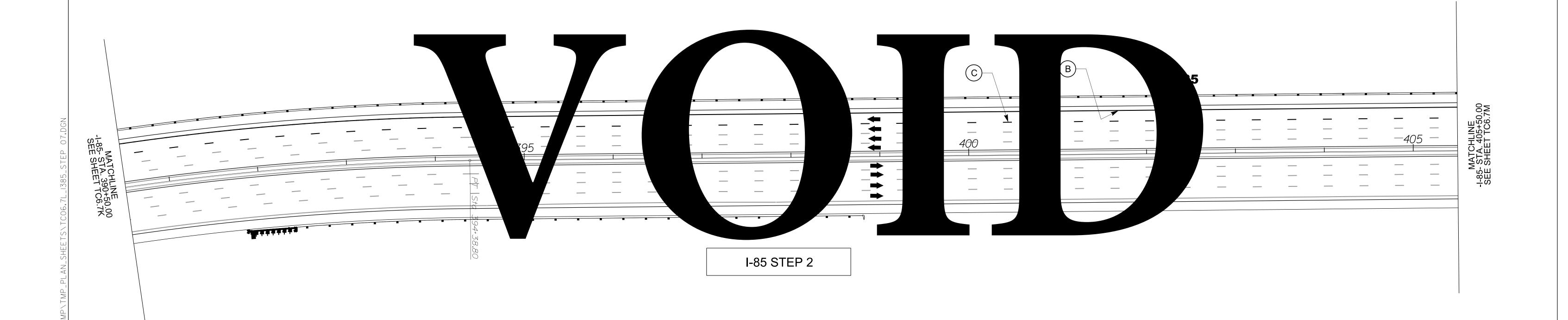

SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

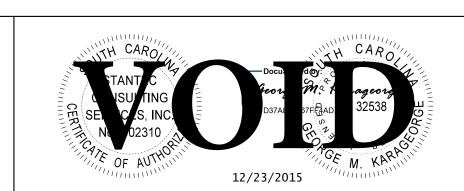

I-85 / I-385 INTERCHANGE


I-85 STEP 2A SCE



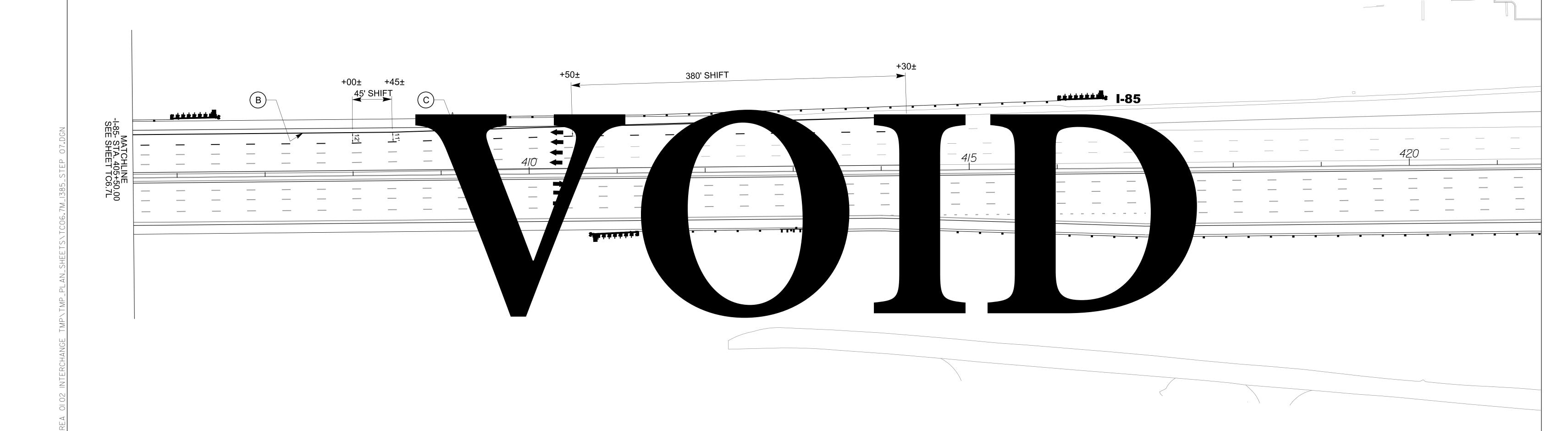






		FED. RD. DIV. NO.	STATE	COUNTY	PROJECT ID	ROUTE NO.	SHEET NO.
		3	S.C.	GREENVILLE	0038111 - R02	I-85 I-385	TC6.7L

SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

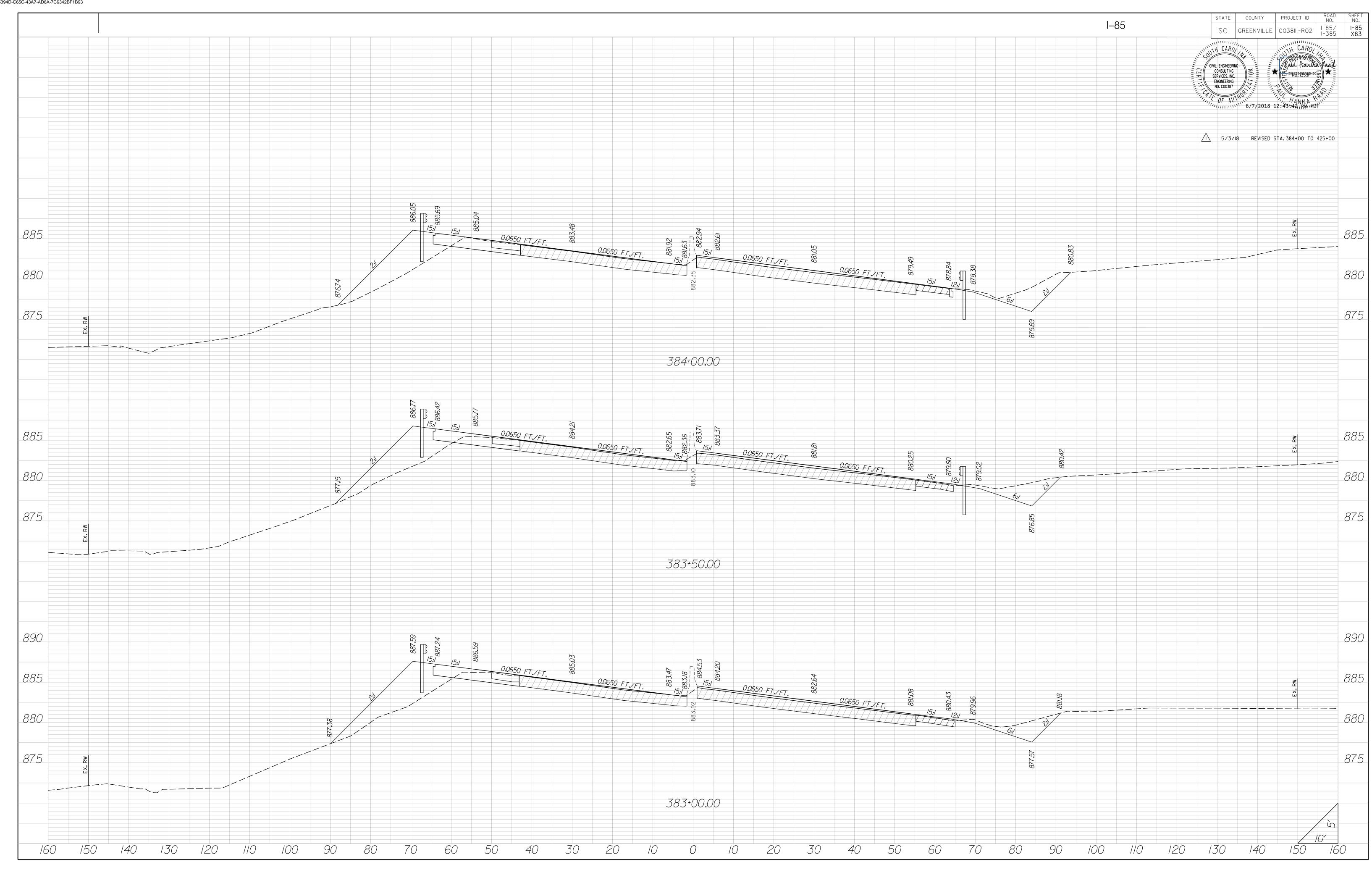

ARTMENT

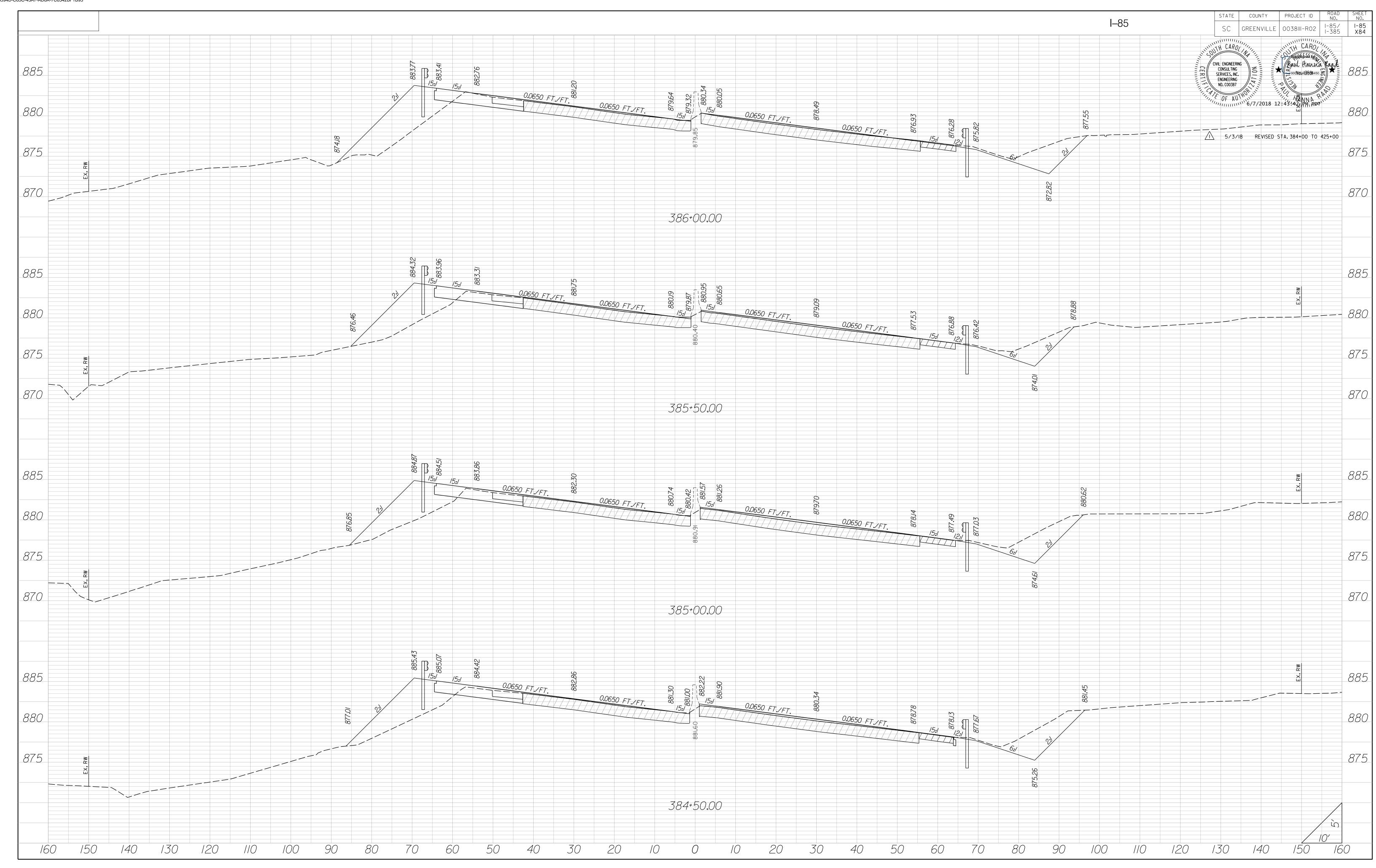
South Carolina Department of Transportation

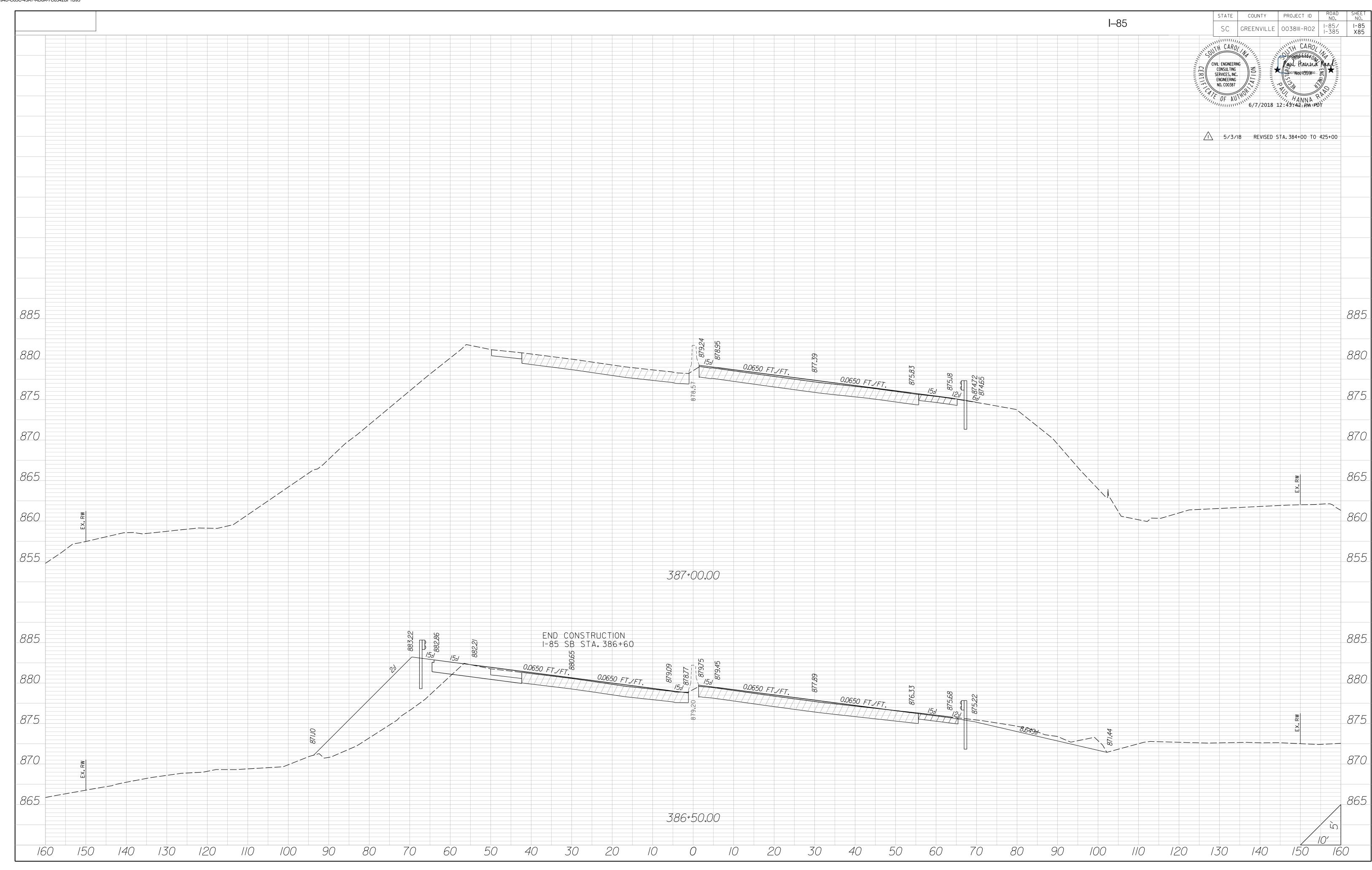
I-85 / I-385 INTERCHANGE

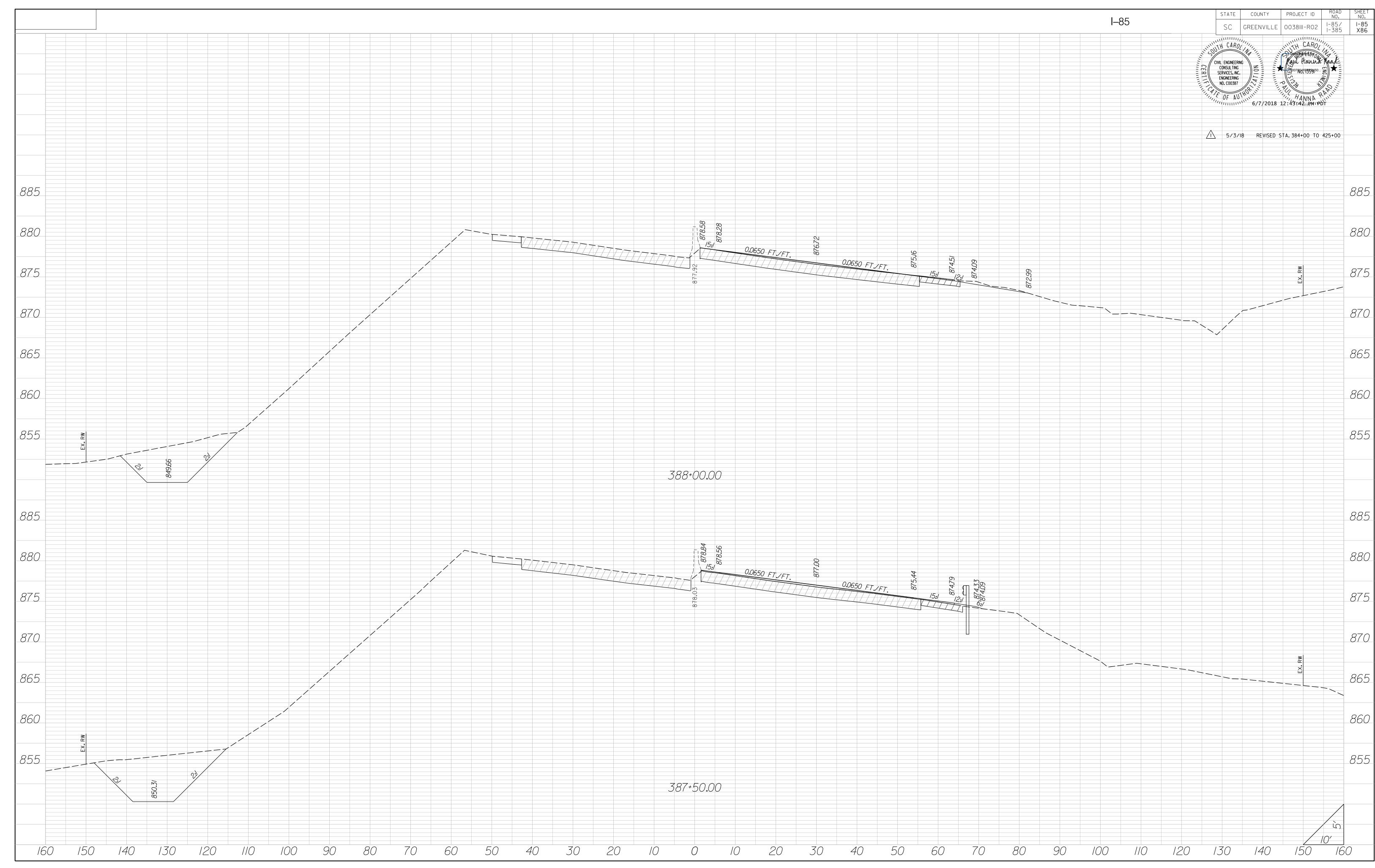
I-385 STEP 7

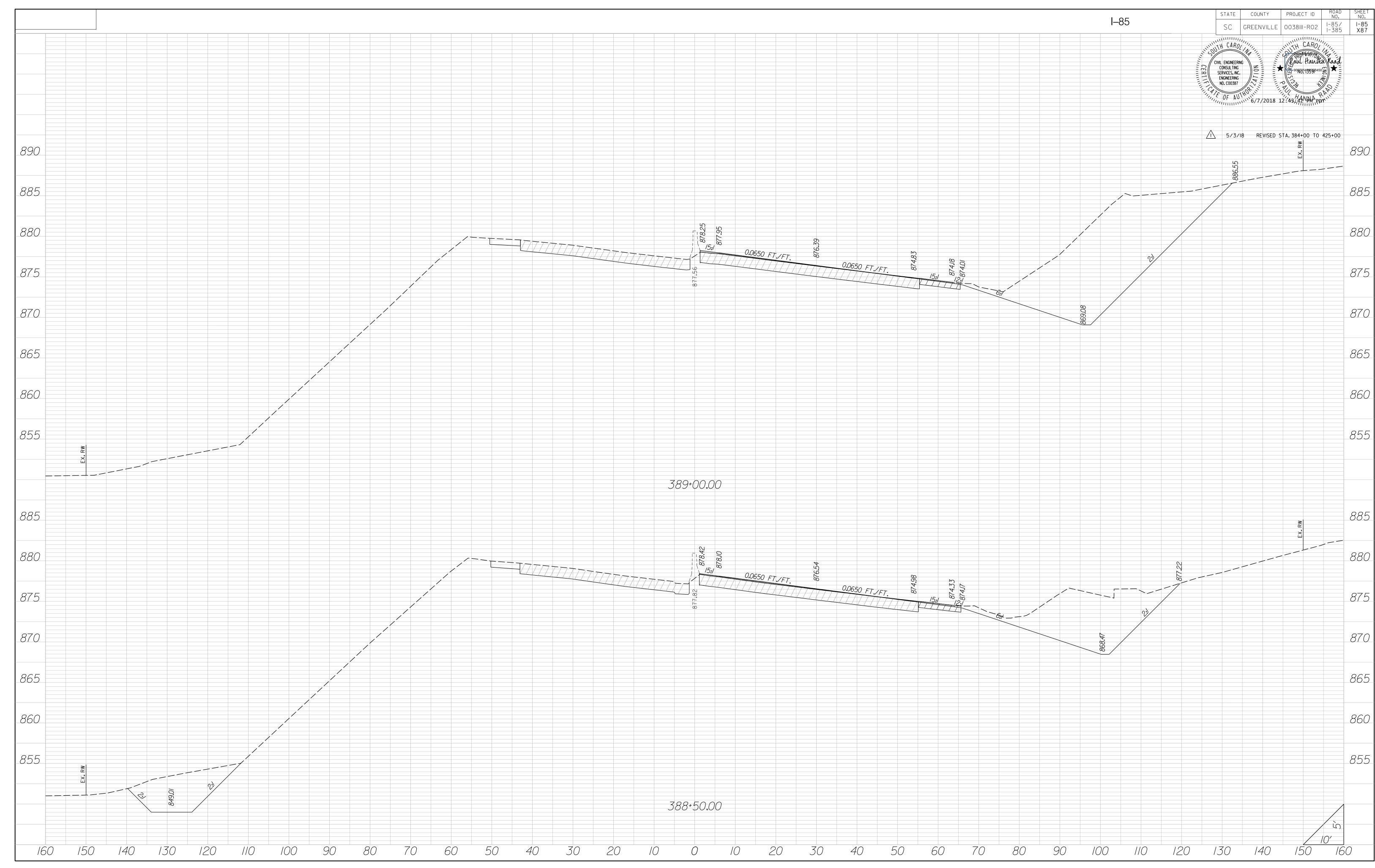
FED. RD. DIV. NO. SHEET NO. PROJECT ID COUNTY I-85 I-385 GREENVILLE | 0038111 - R02 TC6.7M

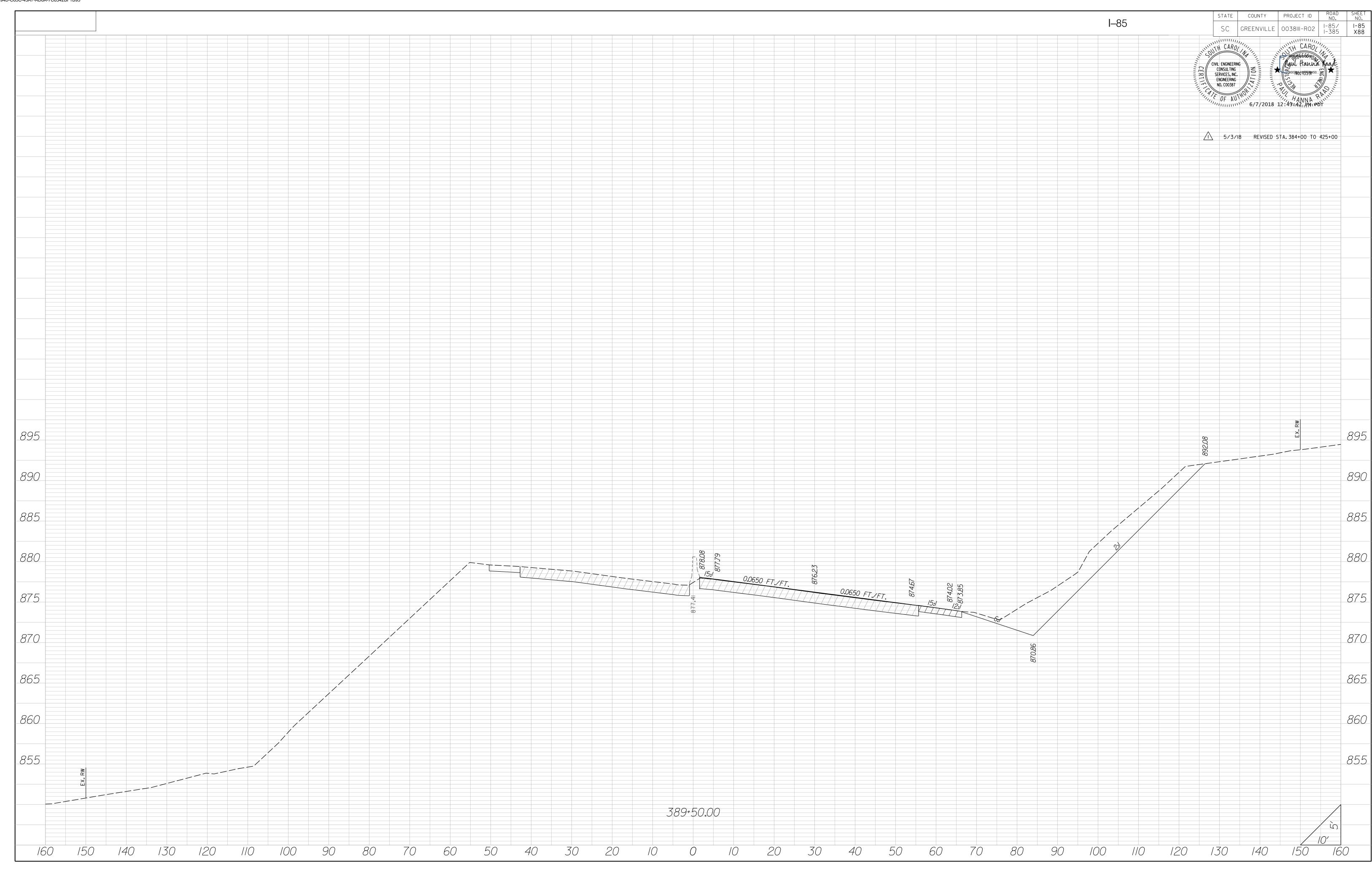


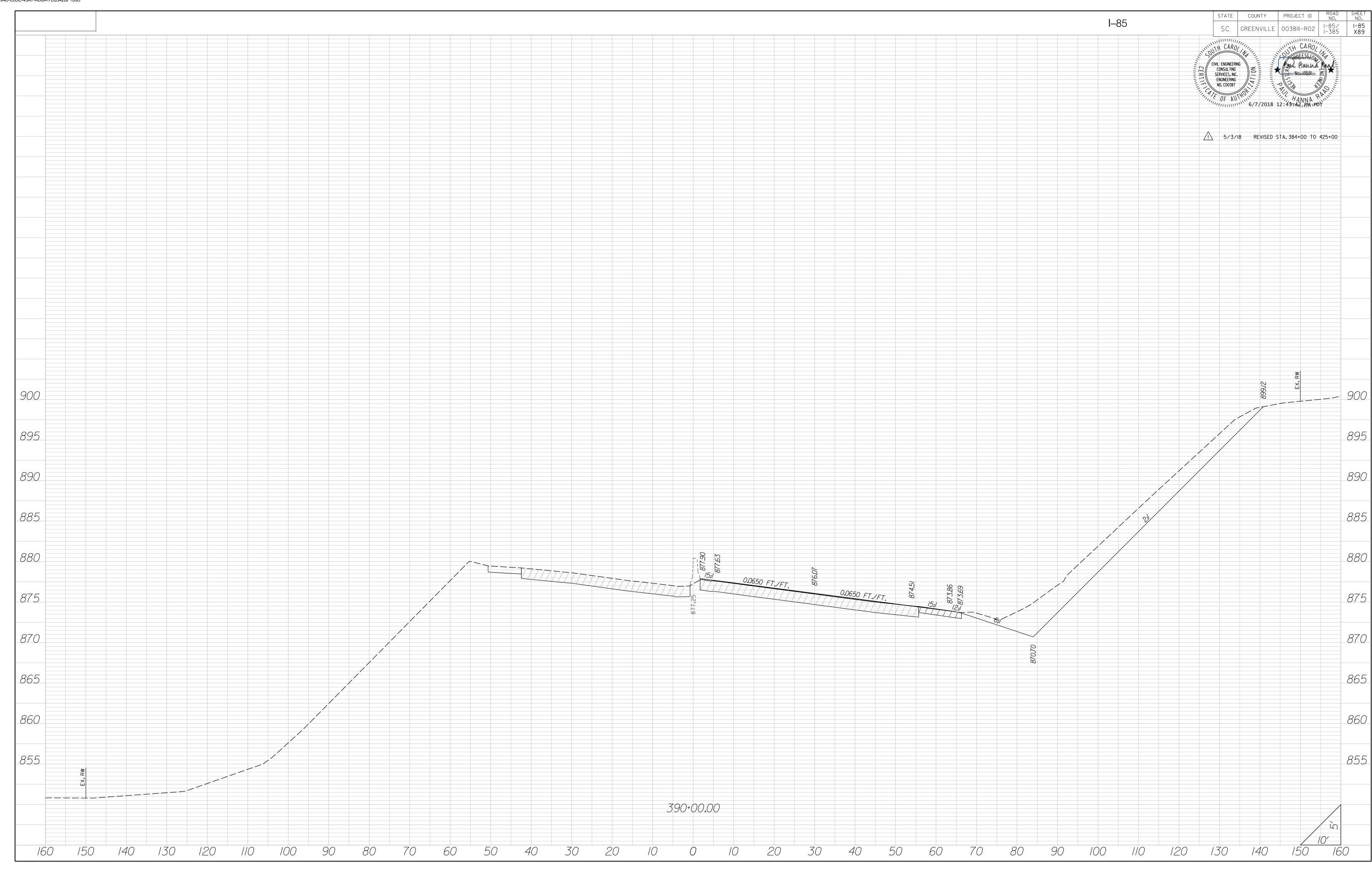

SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

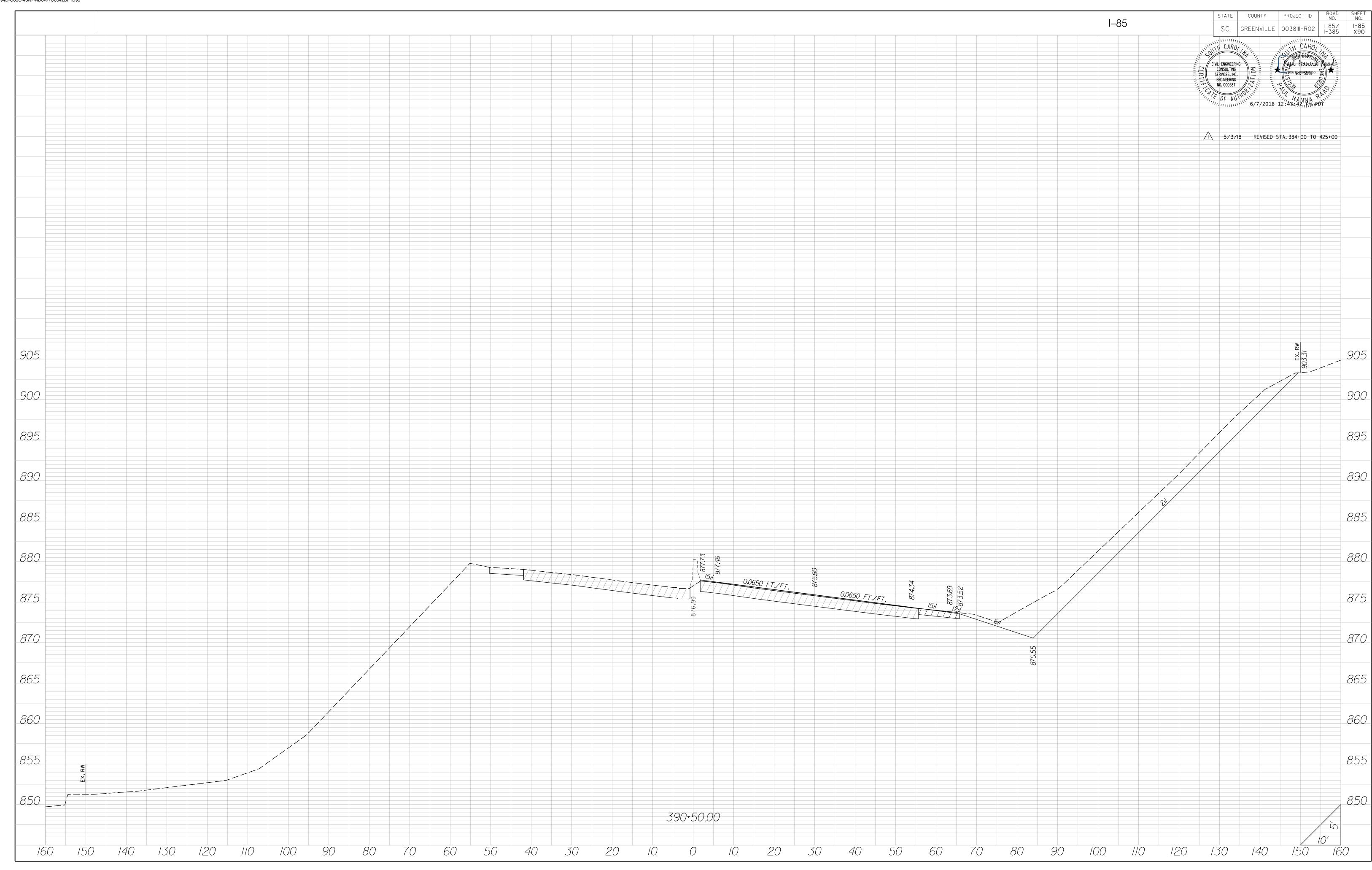

I-85 / I-385 INTERCHANGE

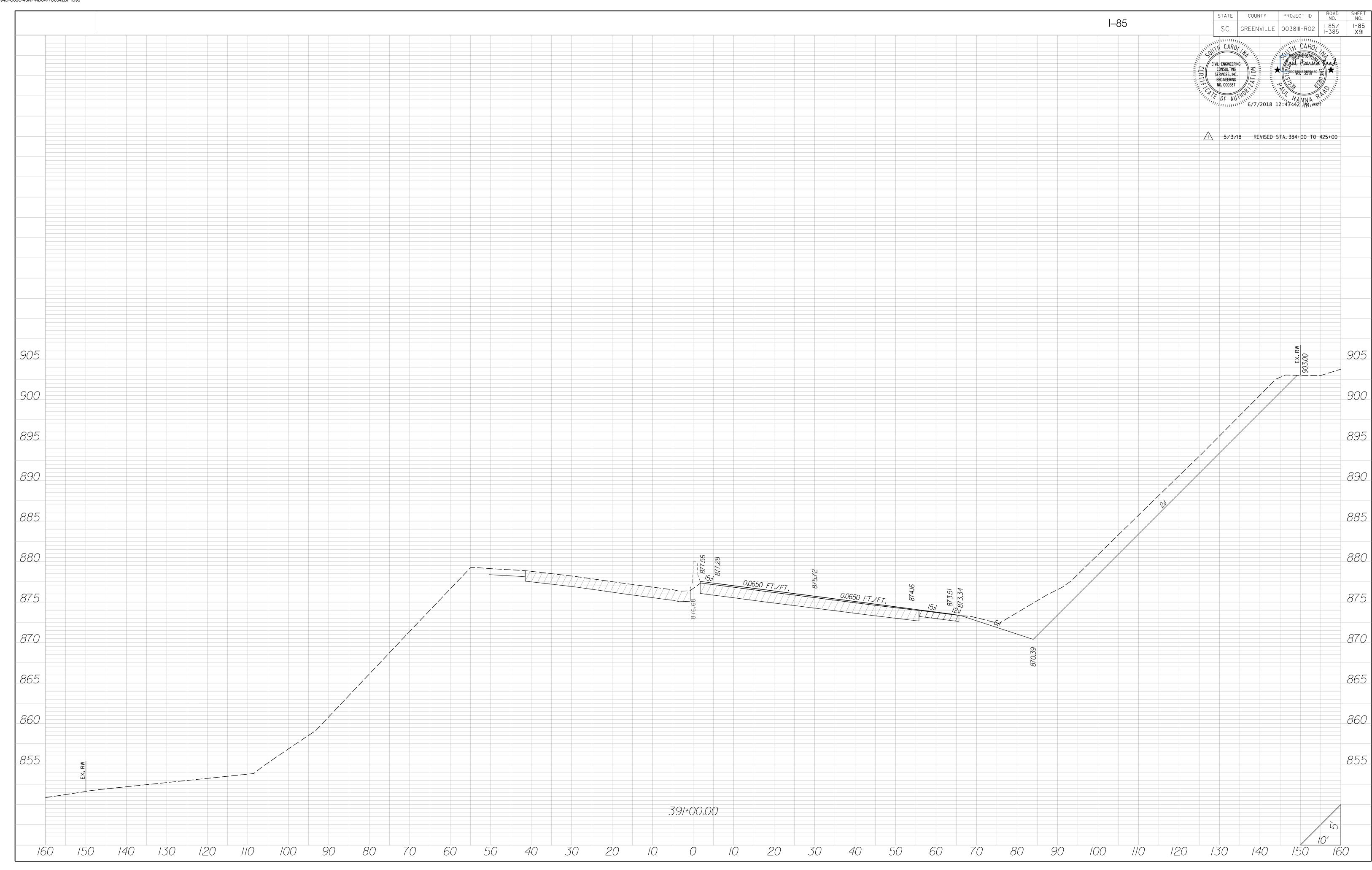

I-385 STEP 7

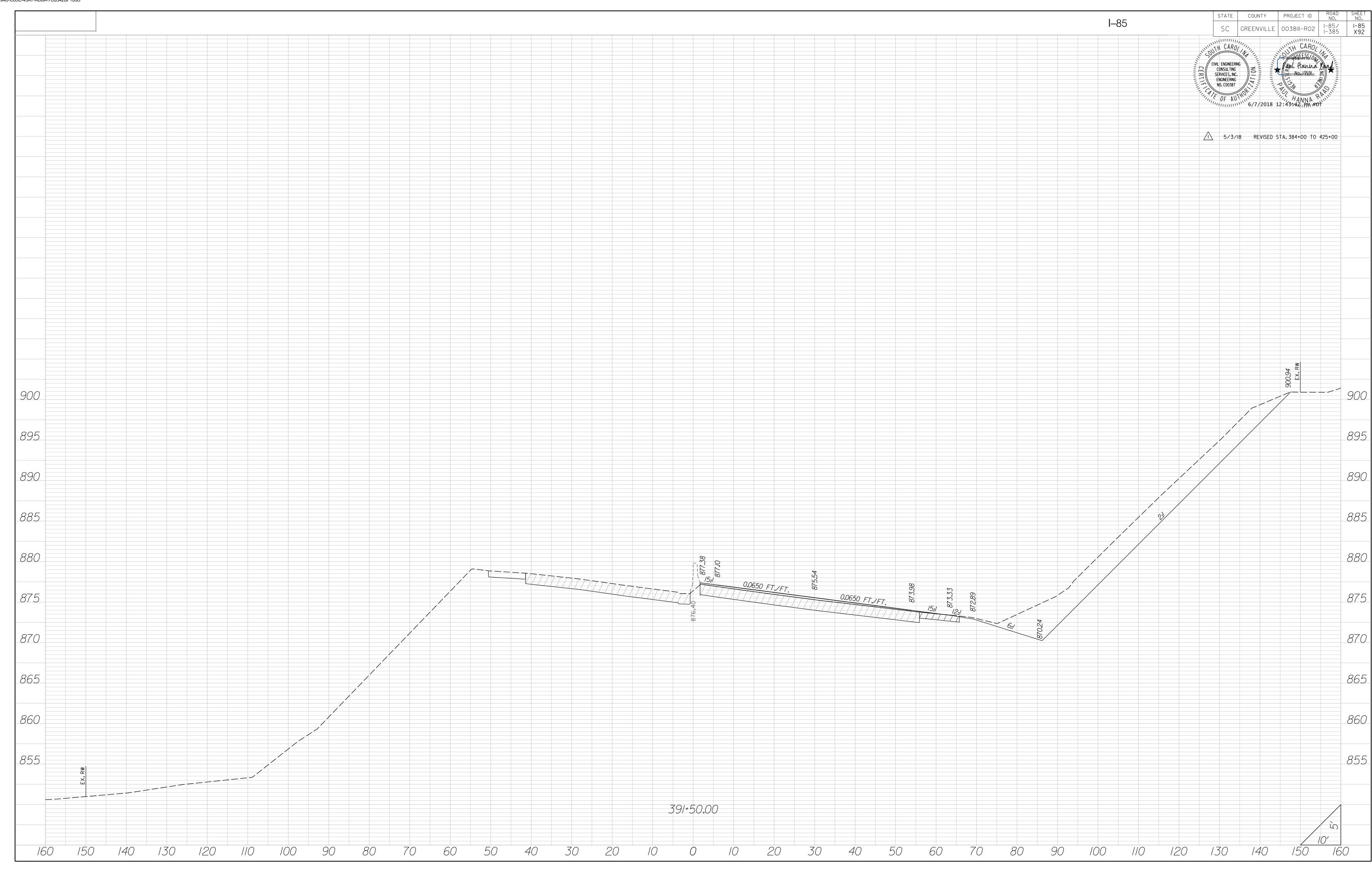

SCENT

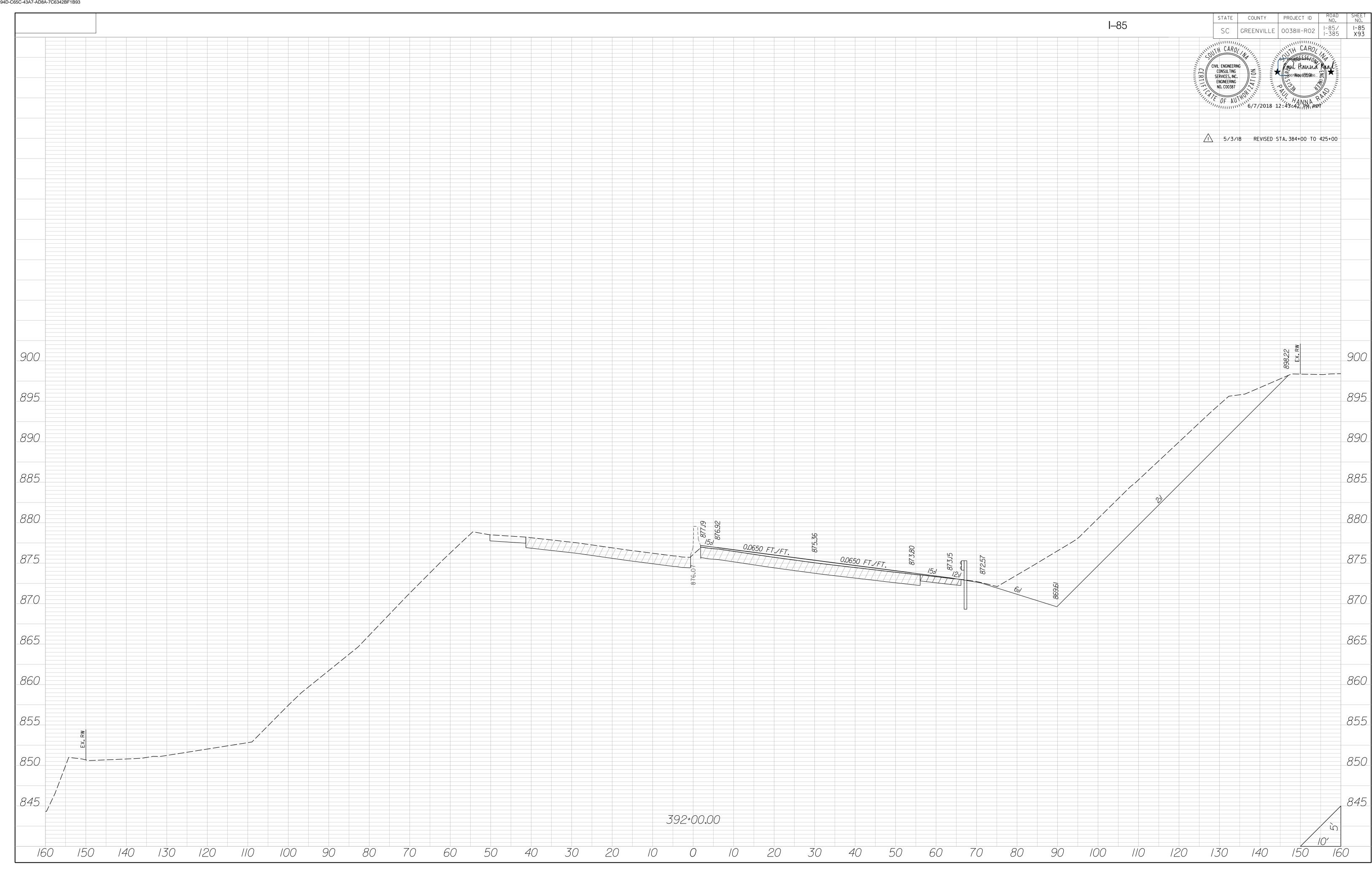


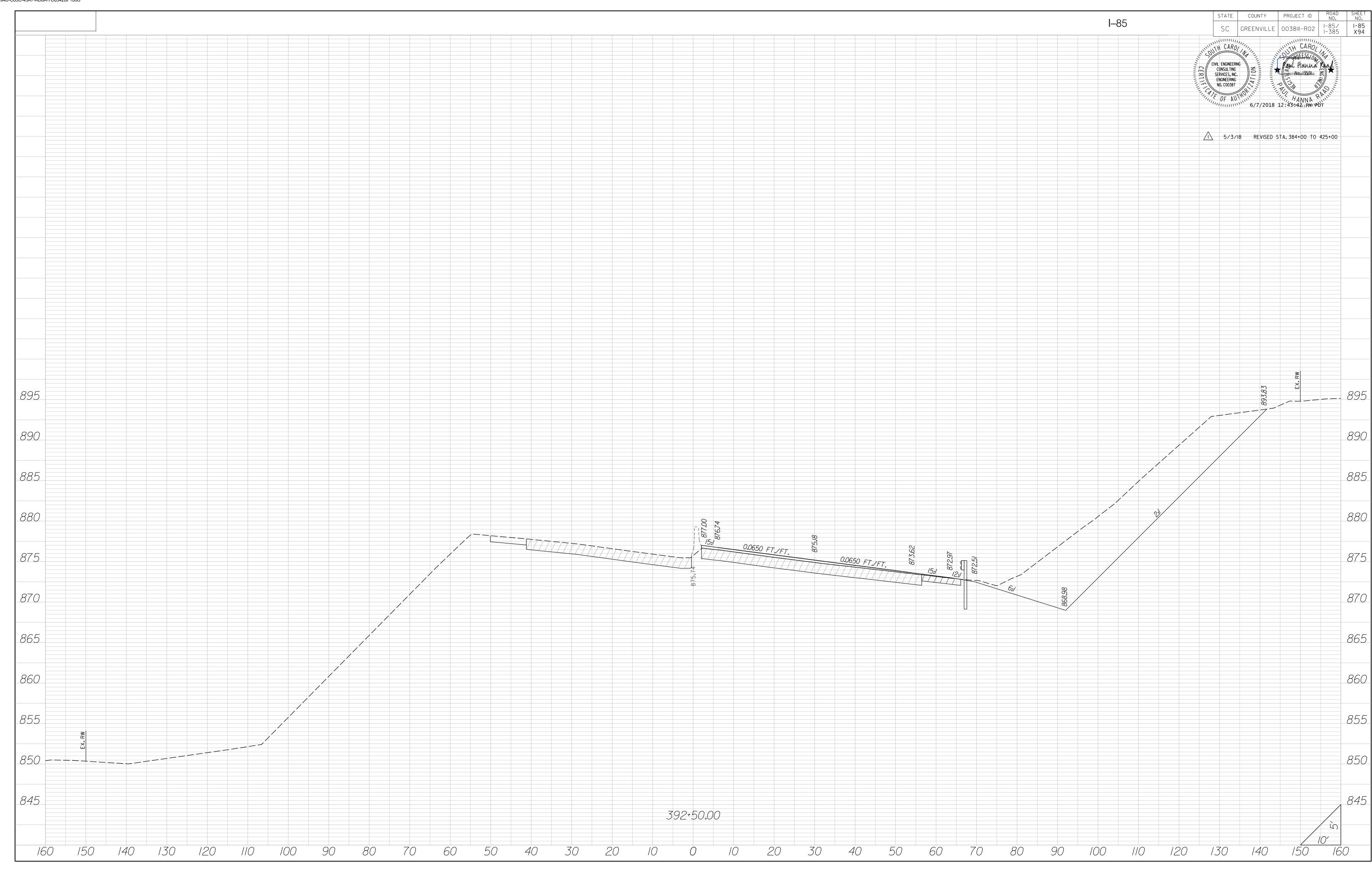


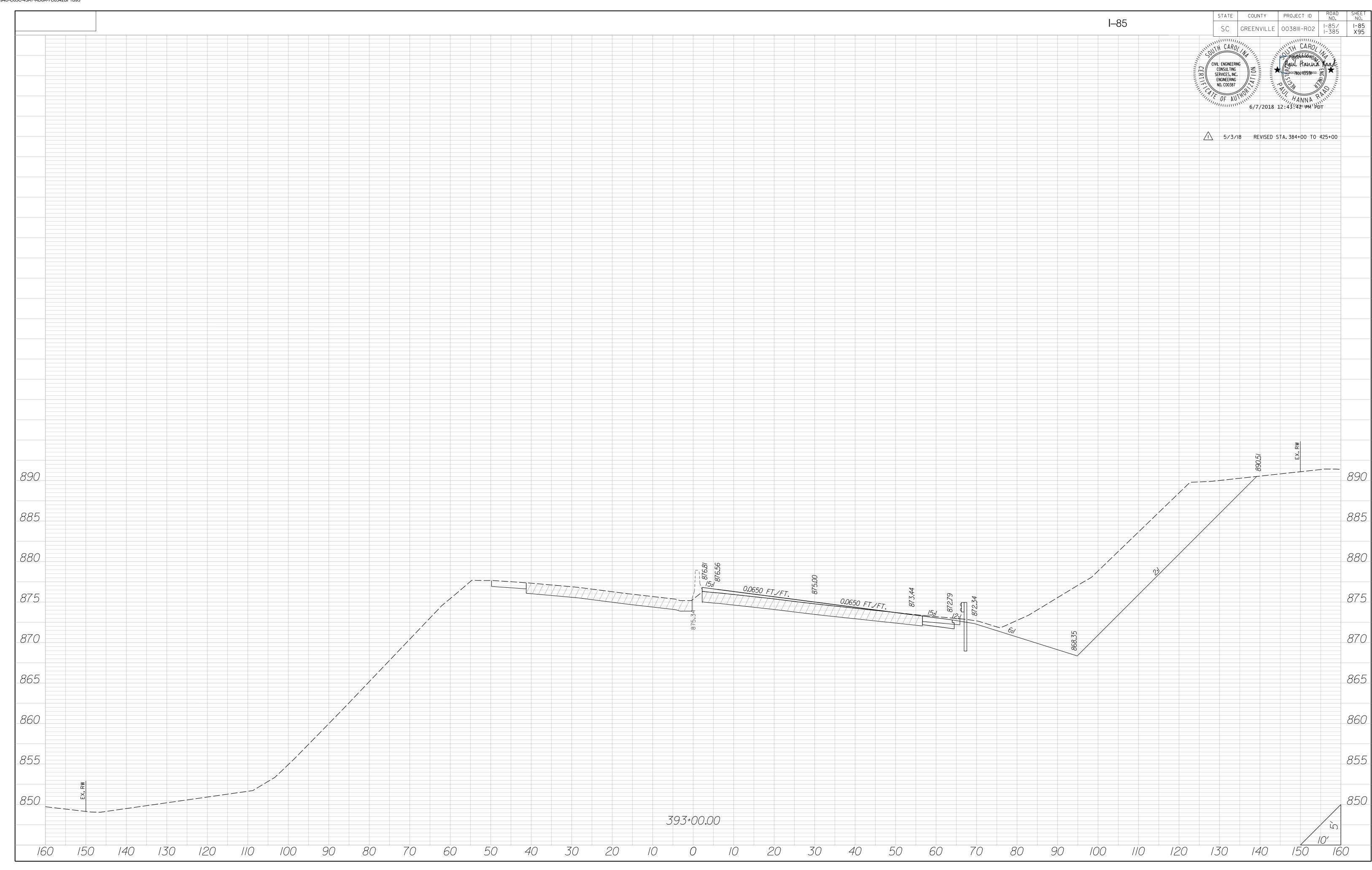


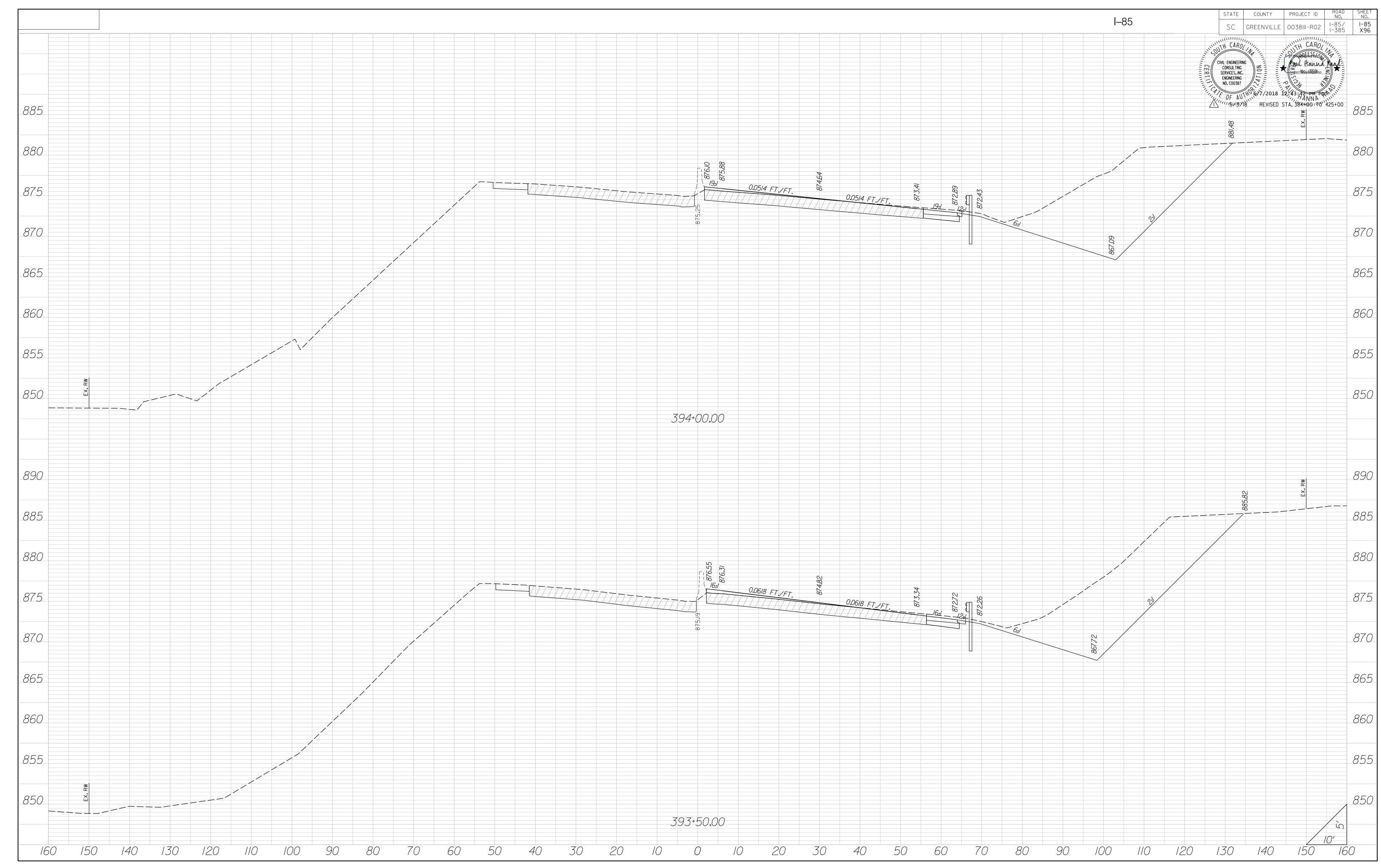


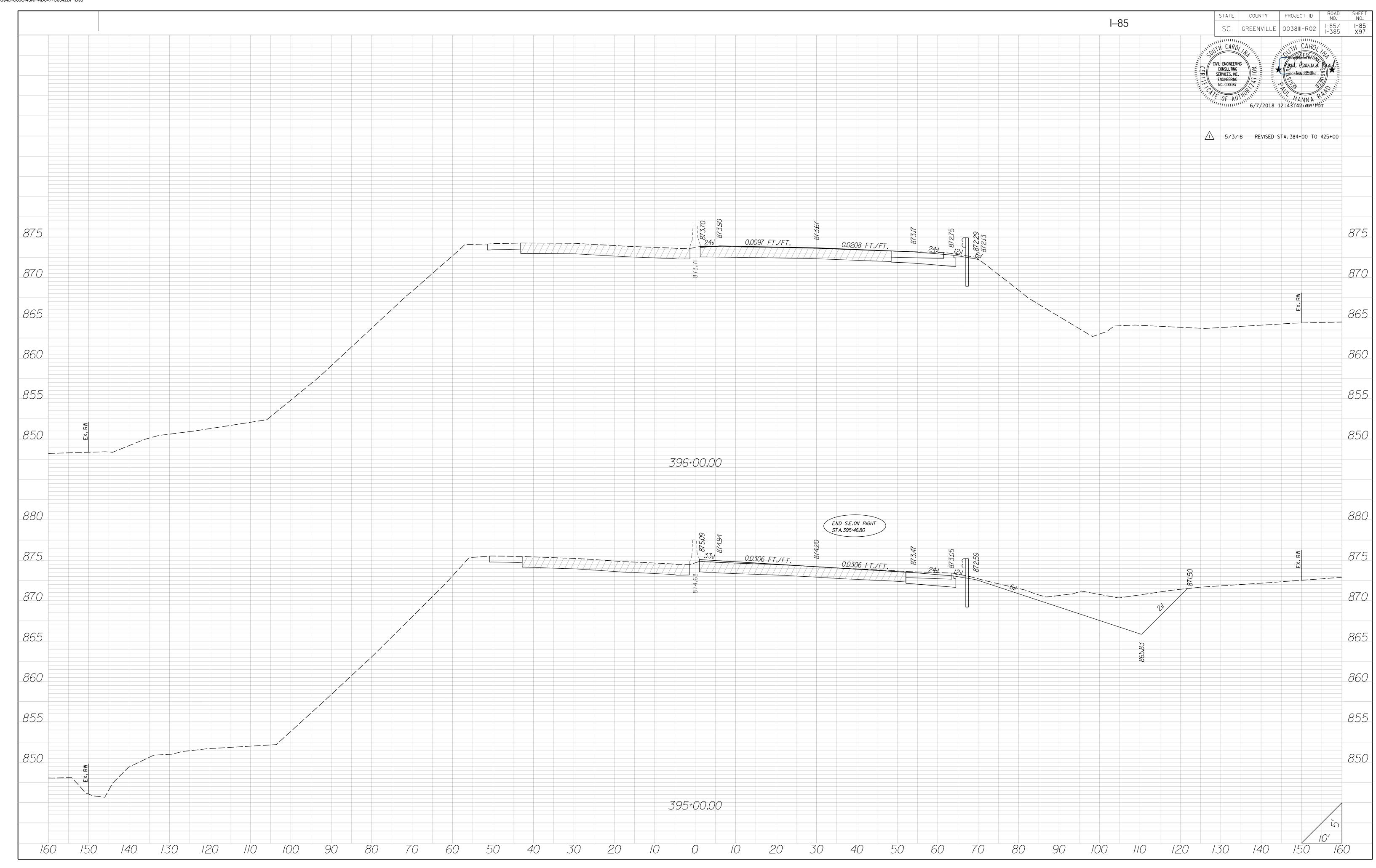


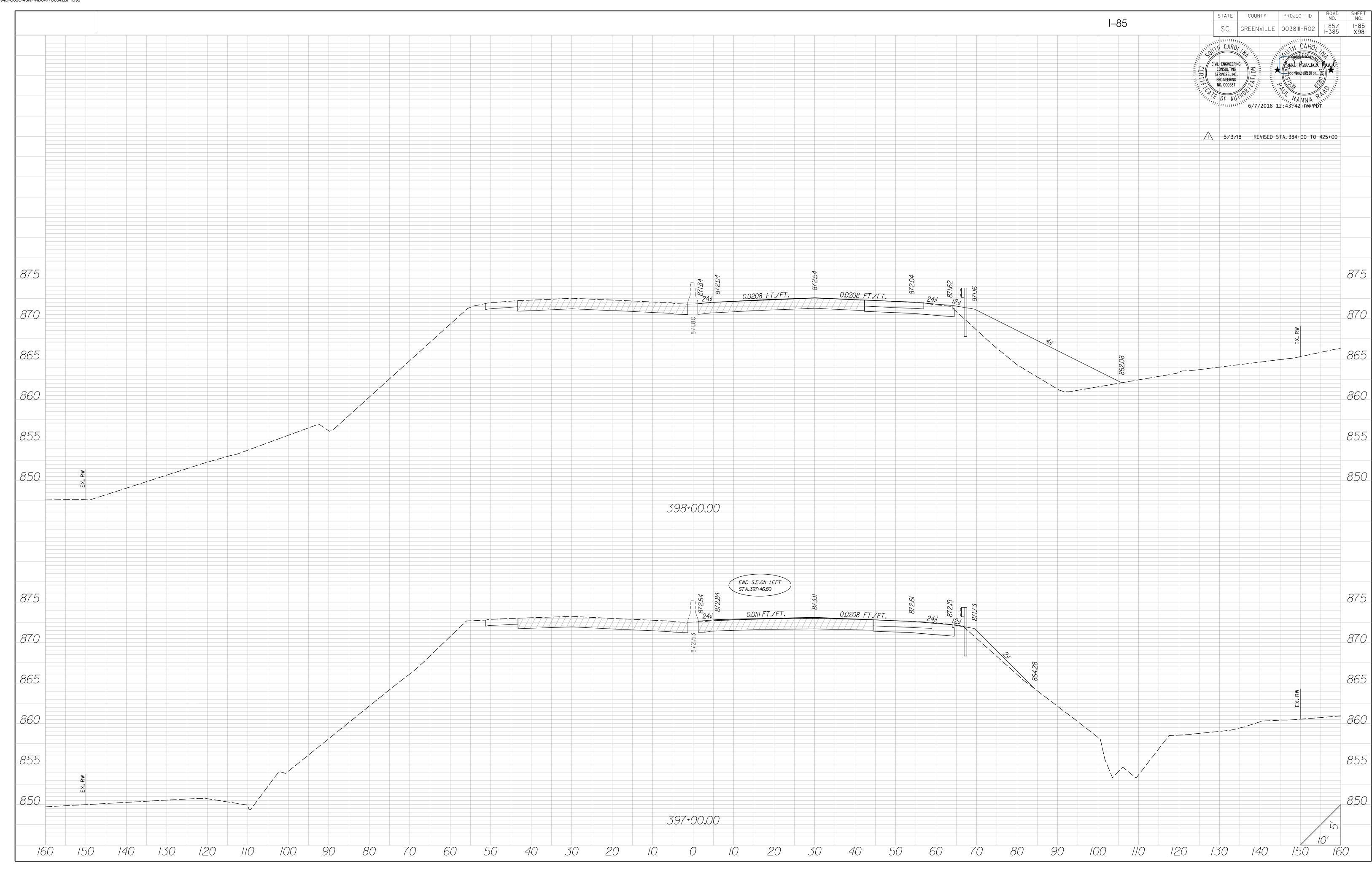


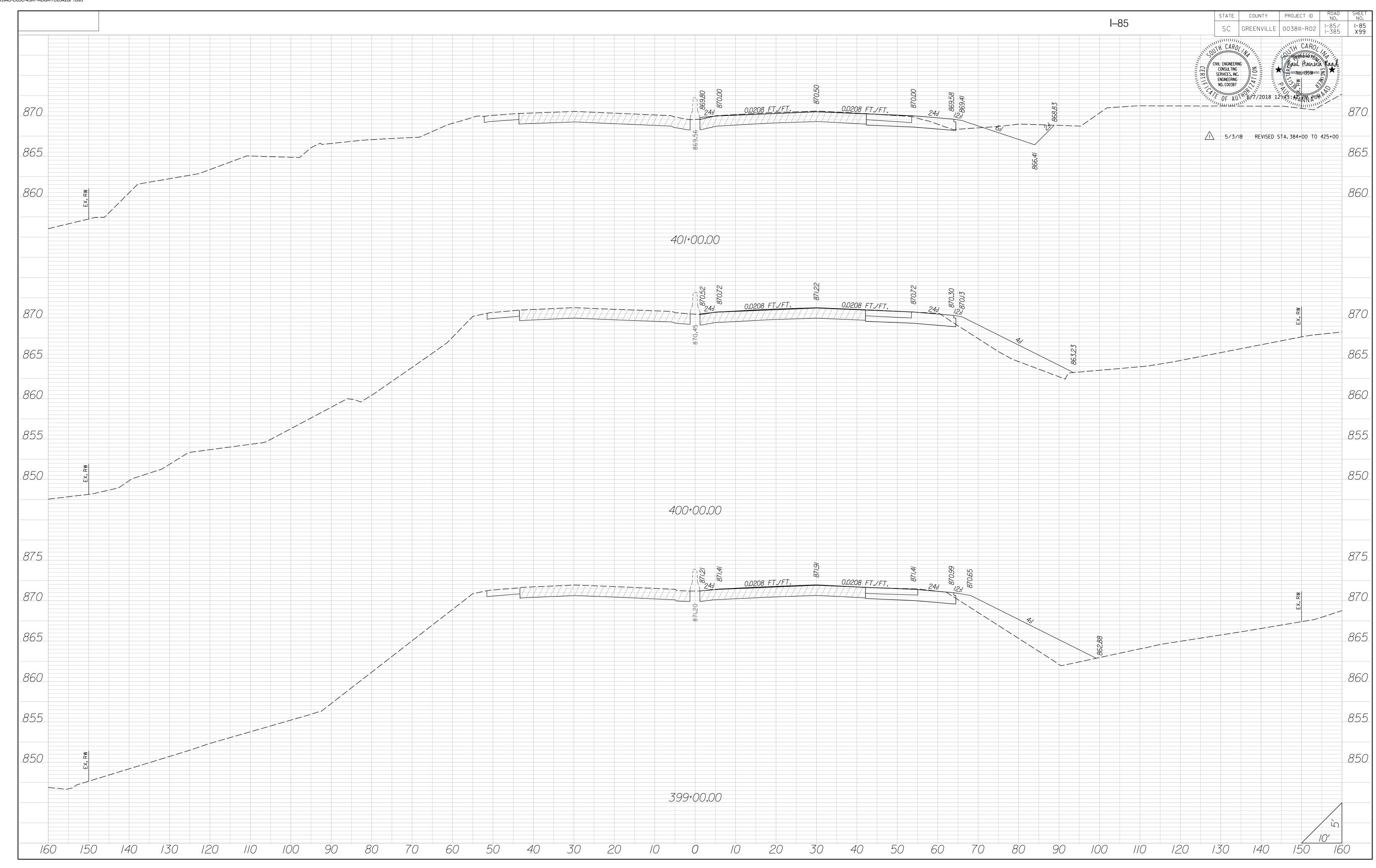


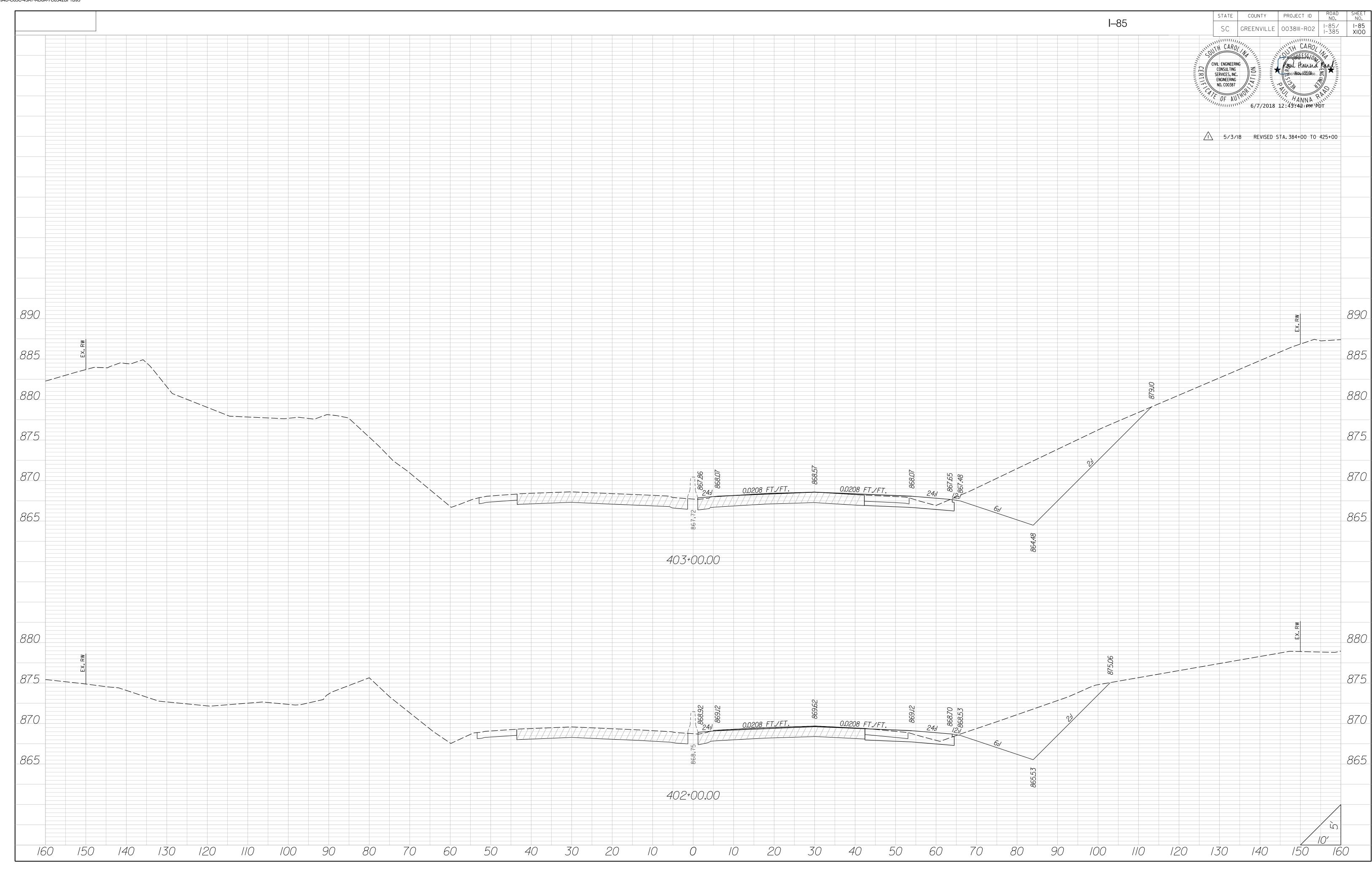


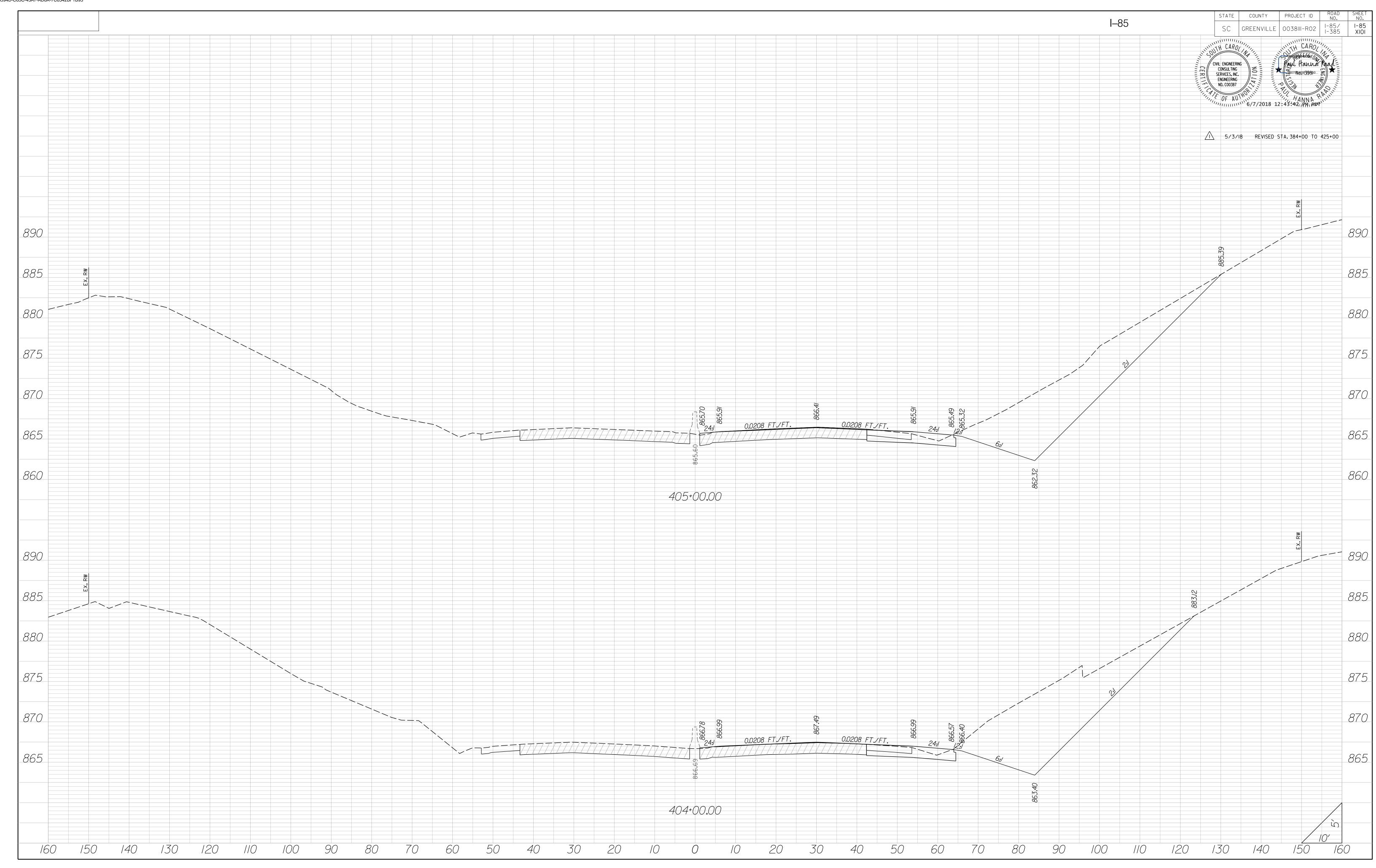


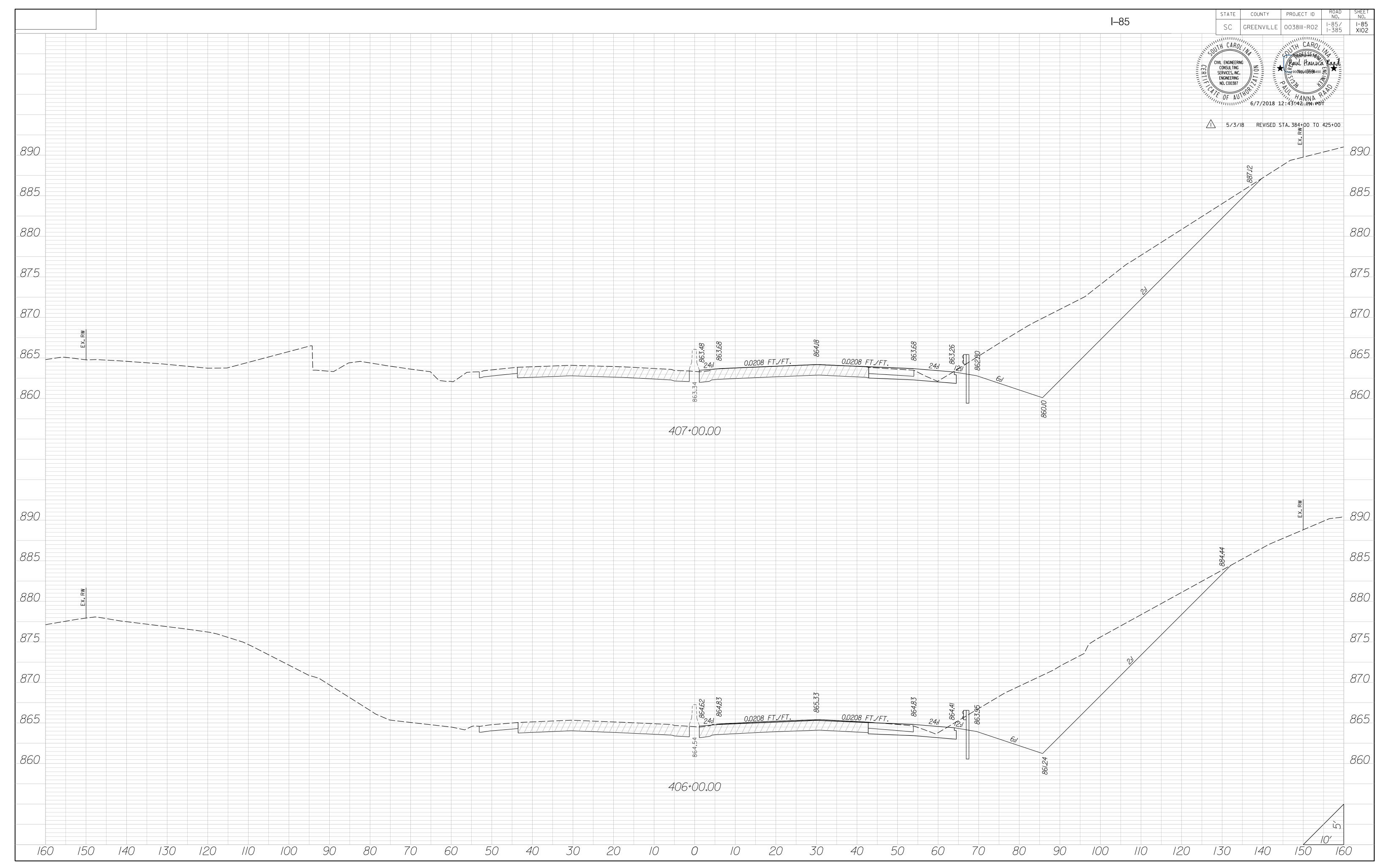


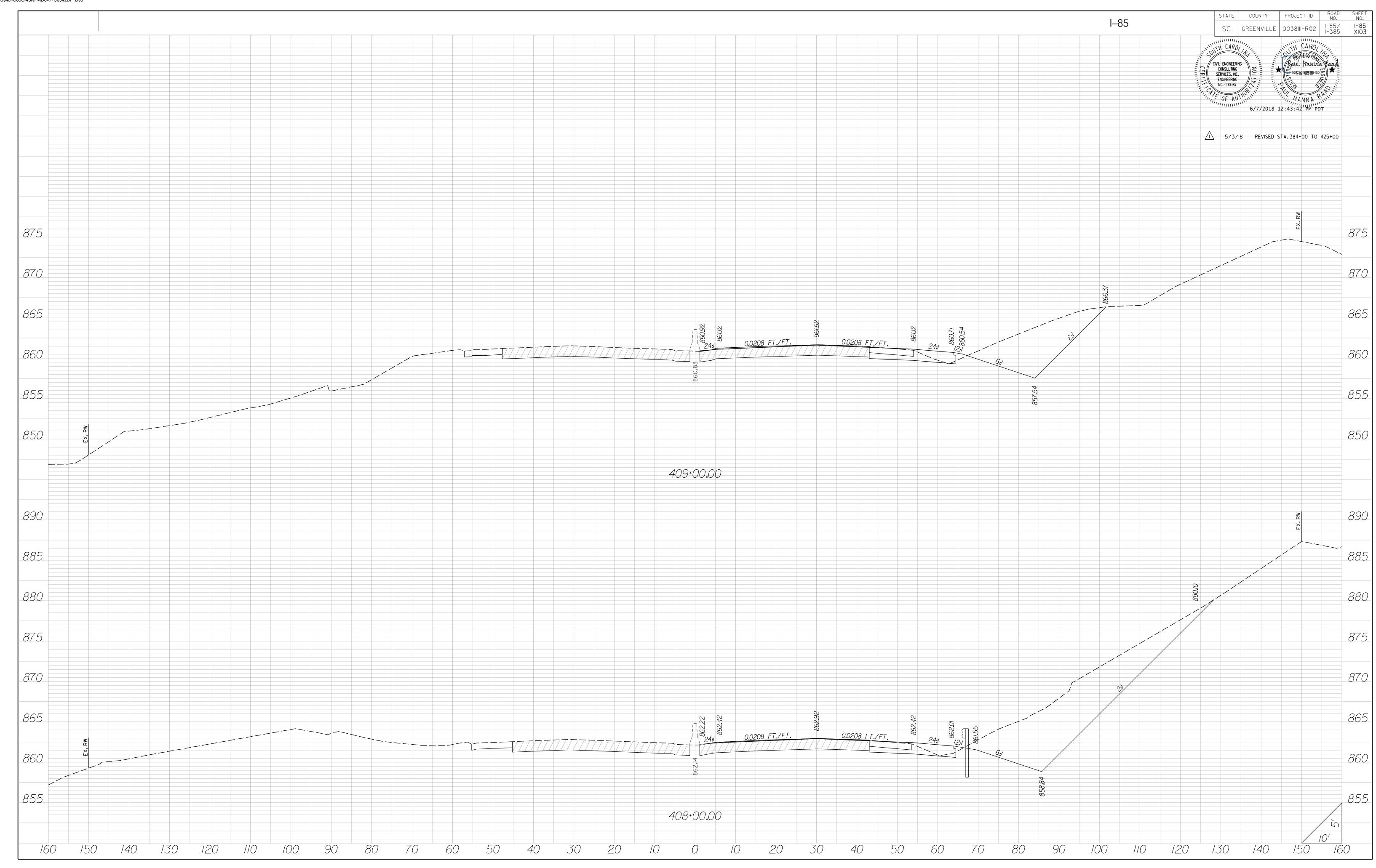


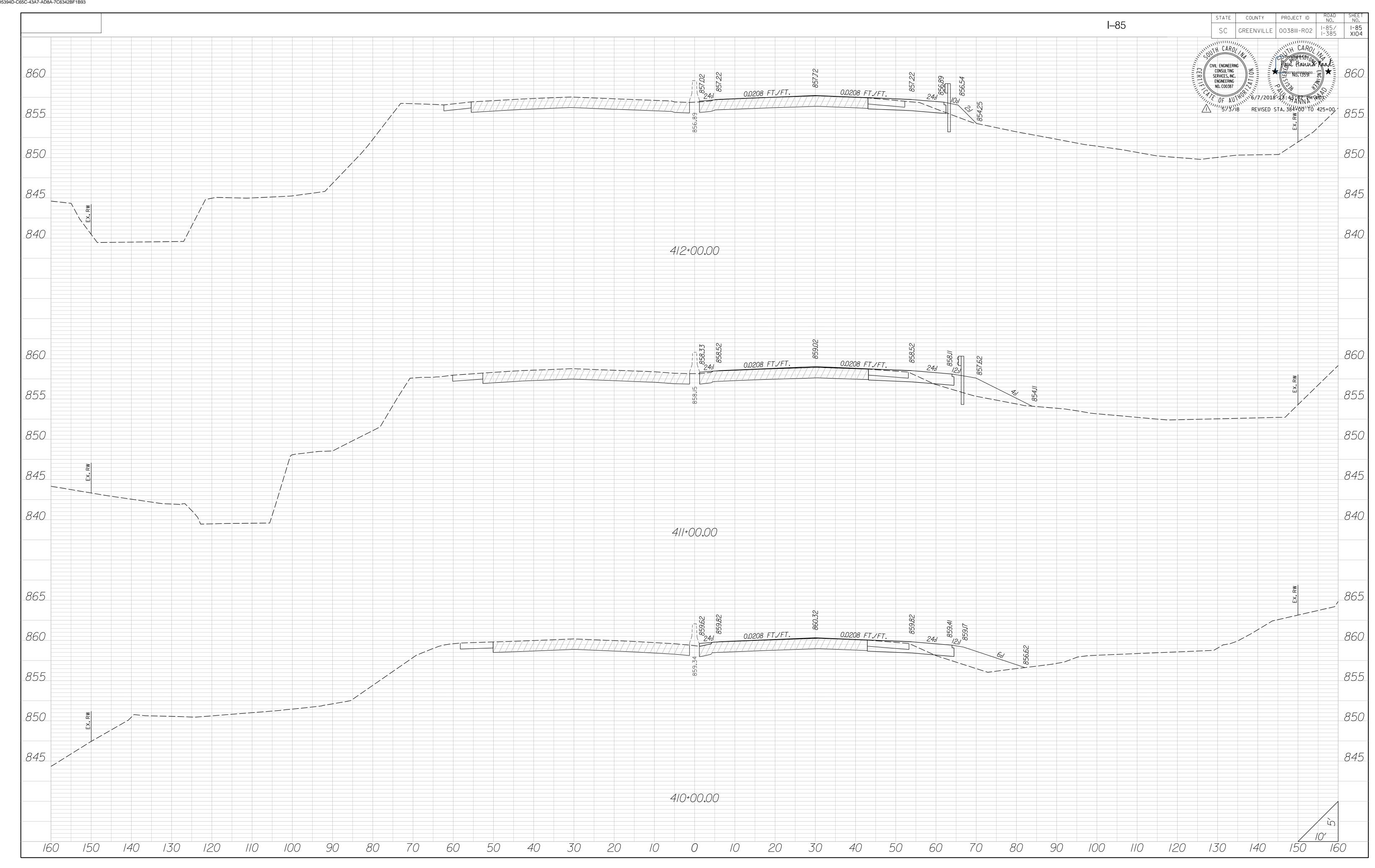


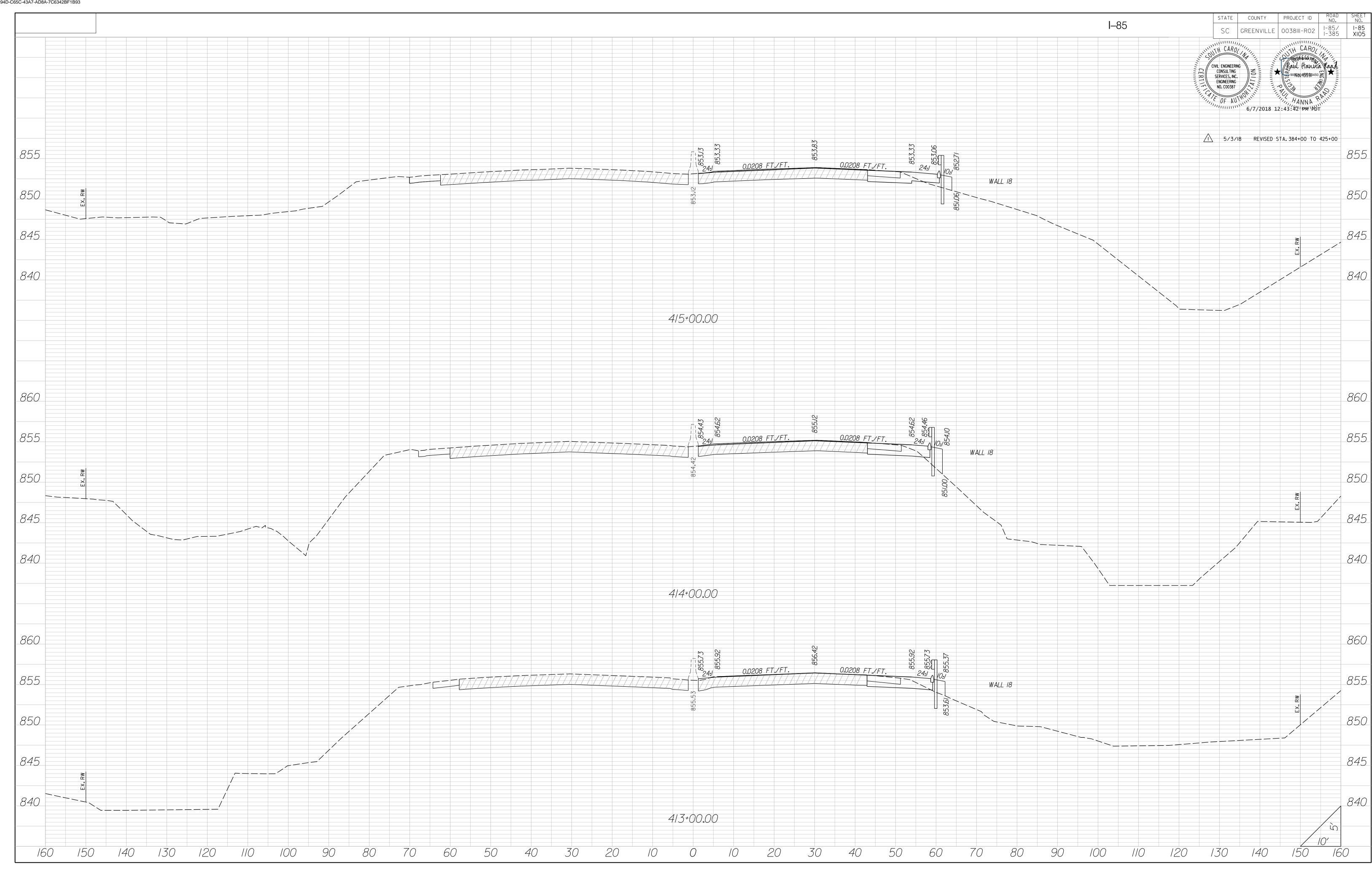


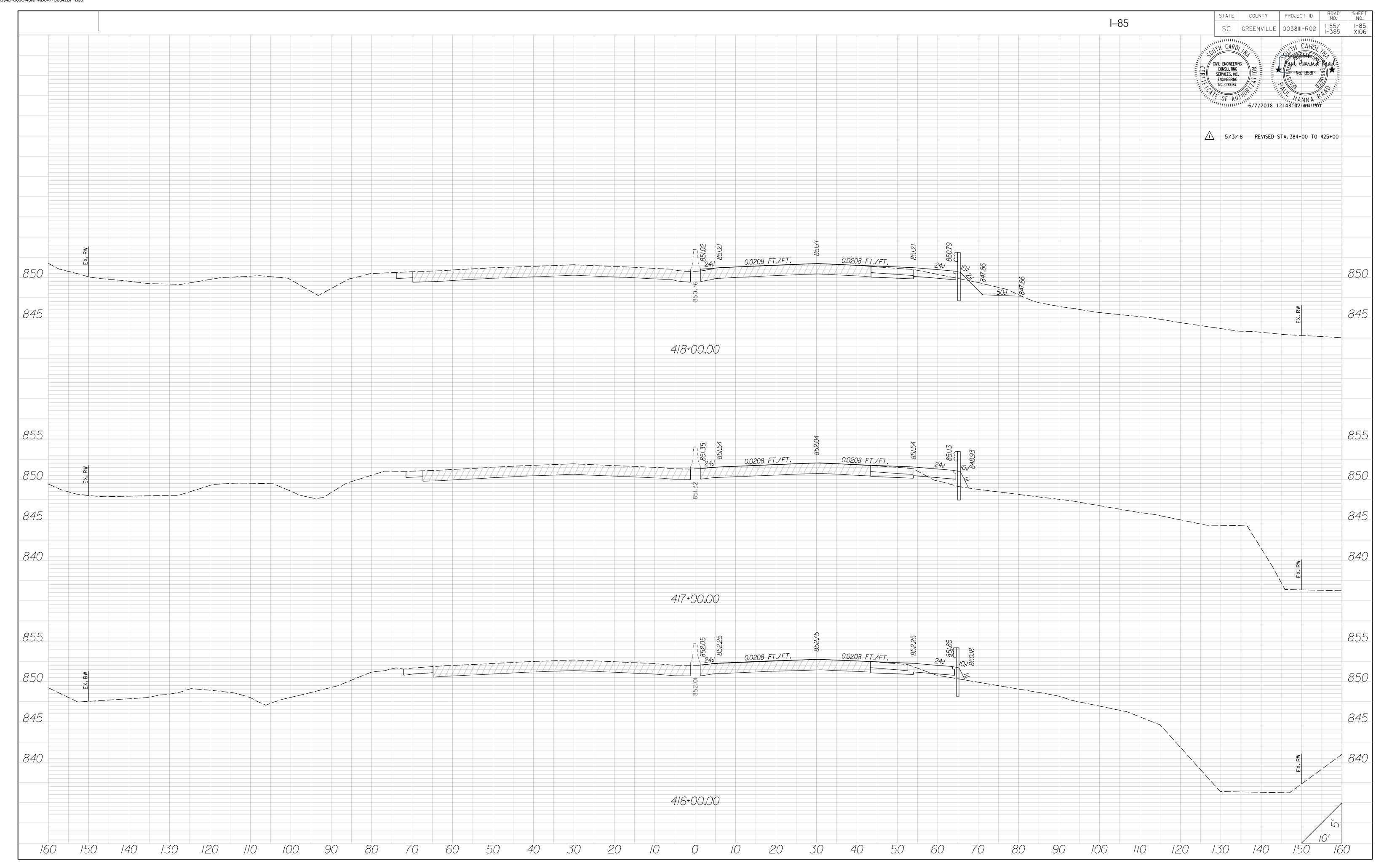


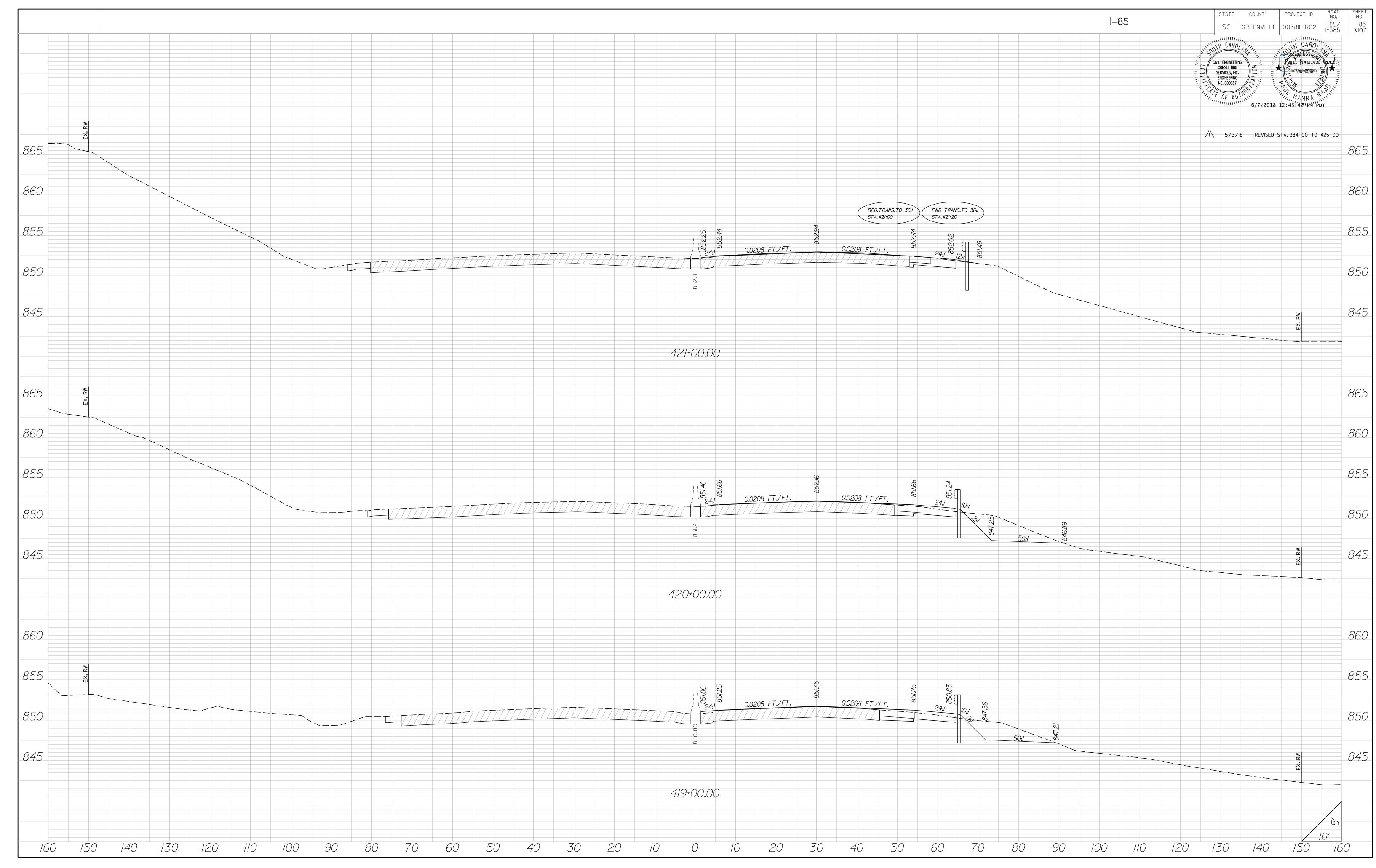


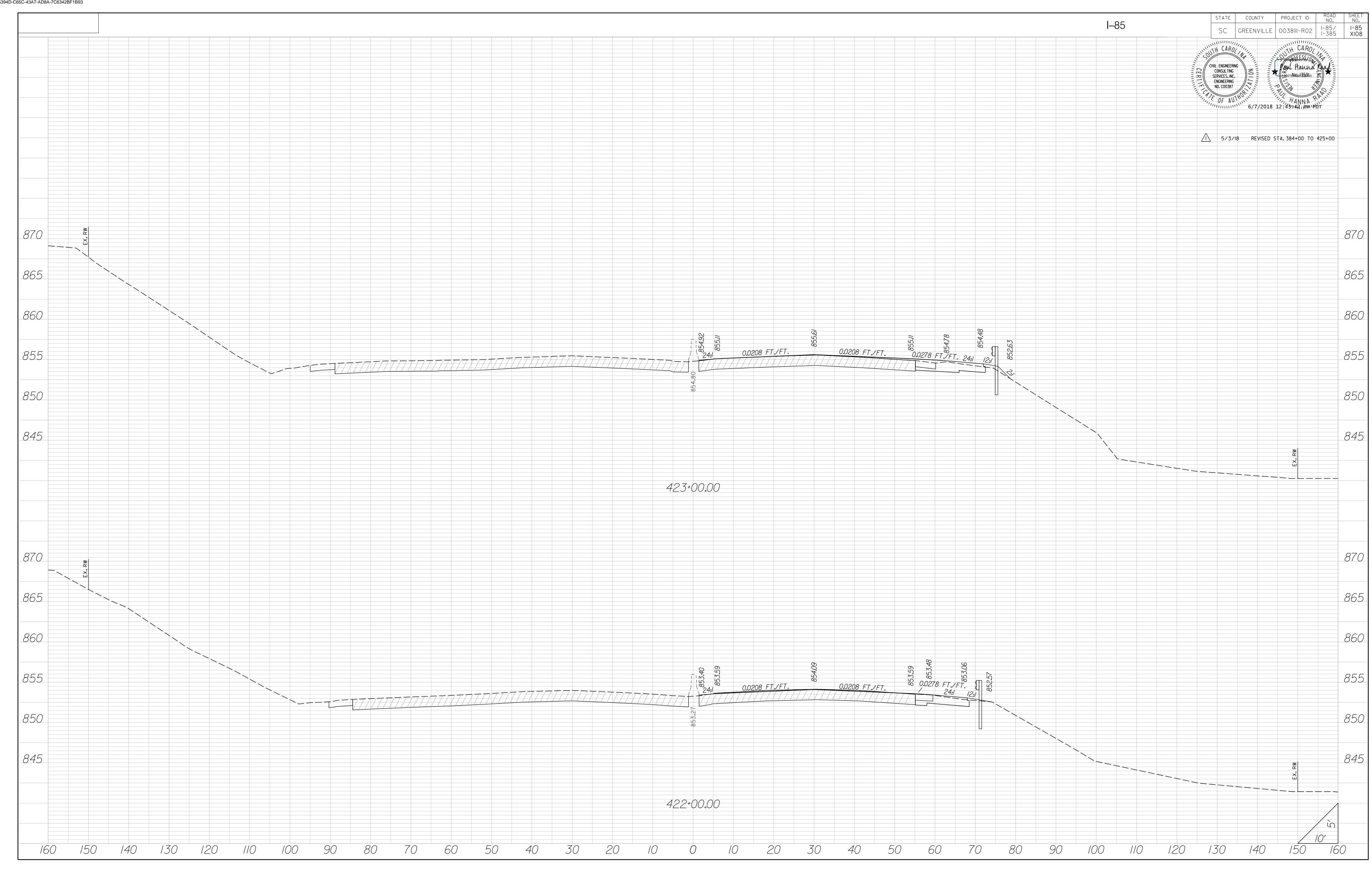


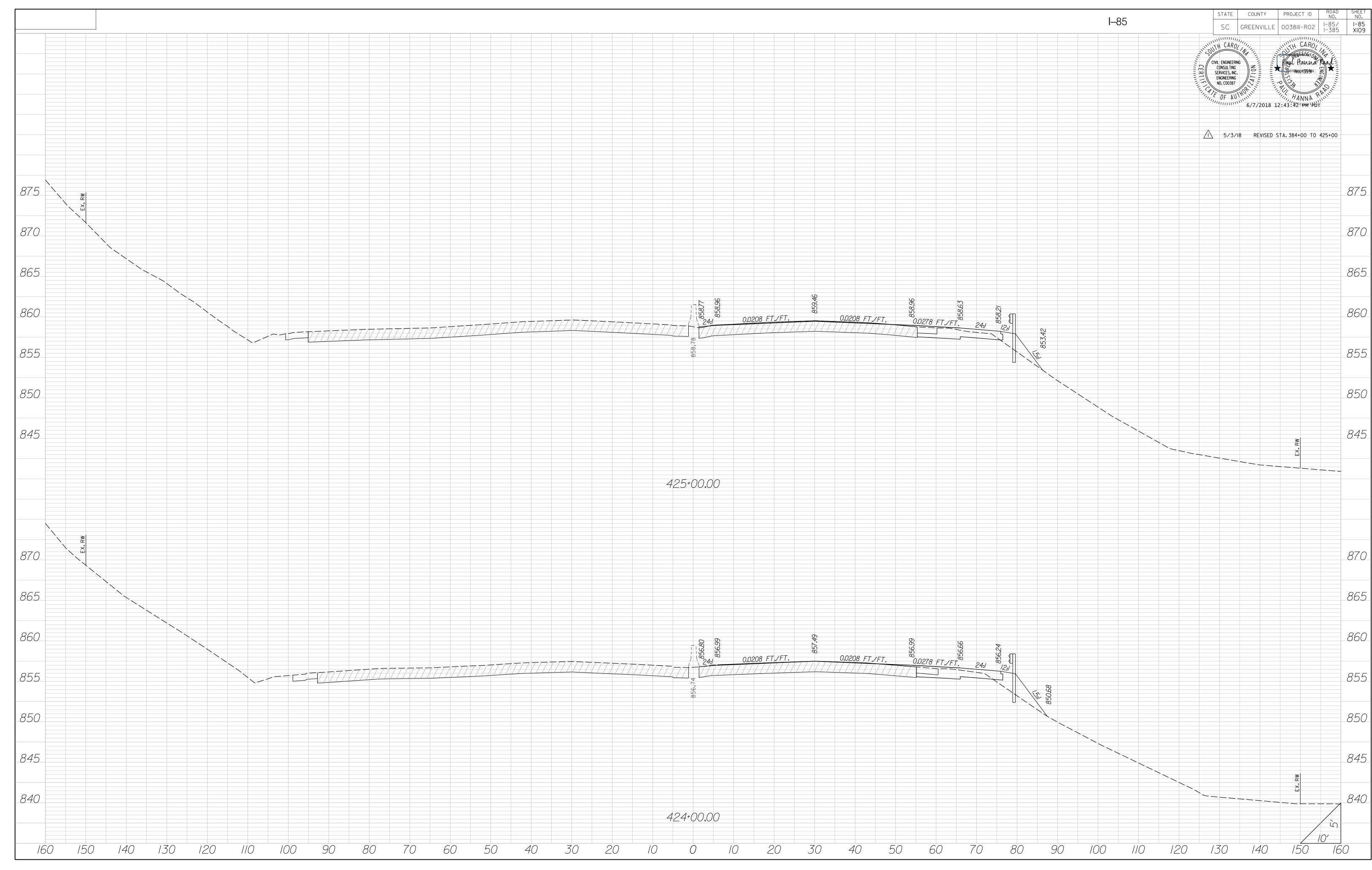












NC Registered Engineering Firm F-1078 NC Registered Geologists Firm C-406 SC Registered Engineering Firm 3241

May 22, 2018

Mr. Maher Almassri Civil Engineering Consulting Services, Inc. 2000 Park Street – Suite 201 Columbia, SC 29201

Re: Interstate 85/385 Interchange Improvements

Rocky Mountain Creek Retaining Wall 18

Greenville County, SC ECS Project No. 08-9283-B6

Dear Mr. Almassri:

As you are aware, ECS Southeast provided Mechanically Stabilized Earth (MSE) Wall recommendations as part of the Final Roadway Geotechnical Engineering Report titled Rocky Mountain Creek Roadway and Retaining Walls, dated October 25, 2016. It is our understanding that since the completion of the report, revisions were made to the retaining walls. Walls 18B, 18C, and 55 have been removed from the project, and require no further analysis. Wall 18A has been revised and was renumbered to wall 18. The purpose of this letter is to provide supplementary geotechnical recommendations for wall 18.

Wall 18A previously consisted of a wire faced MSE wall from station 413+00 to 419+40 (640 feet long) ranging in height from 4.33 feet to 10.27 feet tall. We understand that the wall has been shortened to 200 feet long with an alignment from station 413+00 to 415+00. Wall heights have also been decreased to a range of 3.21 feet to 6.75 feet.

An external stability analysis was performed for Wall 18 at station 413+50 with a design height of 7 feet. The results of the analysis are summarized below in Tables 1.0 and 1.1.

Table 1.0 – MSE Wall External Stability Analysis Results										
	Minimum Calculated Resistance Factor Max. Facto									
Wall Number	Design Height, H, ft ¹	Reinforcement Length, B _{req} , ft (%H)	Bearing Capacity ²	Bearing Sliding ³						
18	3 < H ≤ 7	12.5 (1.79H)	0.23	0.47	5,400					

Table 1.1 – MSE \	Table 1.1 – MSE Wall External Stability Analysis Results (Extreme Event 1)											
		Minimum Calculated Resistance Factor		Max. Factored								
Wall Number	Design Height, H, ft ¹	Reinforcement Length, B _{req} , ft (%H)	Bearing Capacity ²	Sliding ³	Bearing Resistance, psf							
18	3 < H ≤ 7	12.5 (1.79H)	0.17	0.52	8,400							

Notes:

- 1. Height analyzed is measured from PGL to embedment depth.
- 2. Maximum Resistance factor is 0.65 for Static Bearing Capacity and 1.0 for Seismic Bearing Capacity.
- 3. Maximum resistance factor is 1.0 for sliding.

Static and extreme limit state global stability was also evaluated for Wall 18 at station 414+00. Extreme limit state (seismic) considers a pseudo-static horizontal acceleration (kh) of 0.20. Results are summarized below in Tables 1.2 and 1.3.

Table 1.2 – Sta	Table 1.2 – Static Global Stability Analysis											
		Loading	Demand/ Capacity, D/C			Performance						
Wall Number	Vall Number Direction		Morganstern- Price	Bishop	Spencer	Criteria Met						
Wall 18 I-85 Station	Transverse	ESA	0.61	0.61	0.61	Yes						
413+50	Transverse	TSA	0.41	0.41	0.41	Yes						

Table 1.3 – Ex	Table 1.3 – Extreme Limit State Global Stability Analysis											
			Dem	Performance								
Wall Number	Direction	k _h	Morganstern- Price	Bishop	Spencer	Criteria Met						
Wall 18 I-85 Station 413+50	Transverse	0.20	0.61	0.62	0.61	Yes						

Revisions to the Geotechnical Notes on Plans have been made to reflect the changes to walls 18 and 55, and are provided in attached Roadway Notes on Plans. As shown in the attached analysis, the proposed wall 18 meets the SCDOT GDM performance requirements.

If you have any questions concerning the MSE Wall recommendations, please do not hesitate to contact us.

Respectfully,

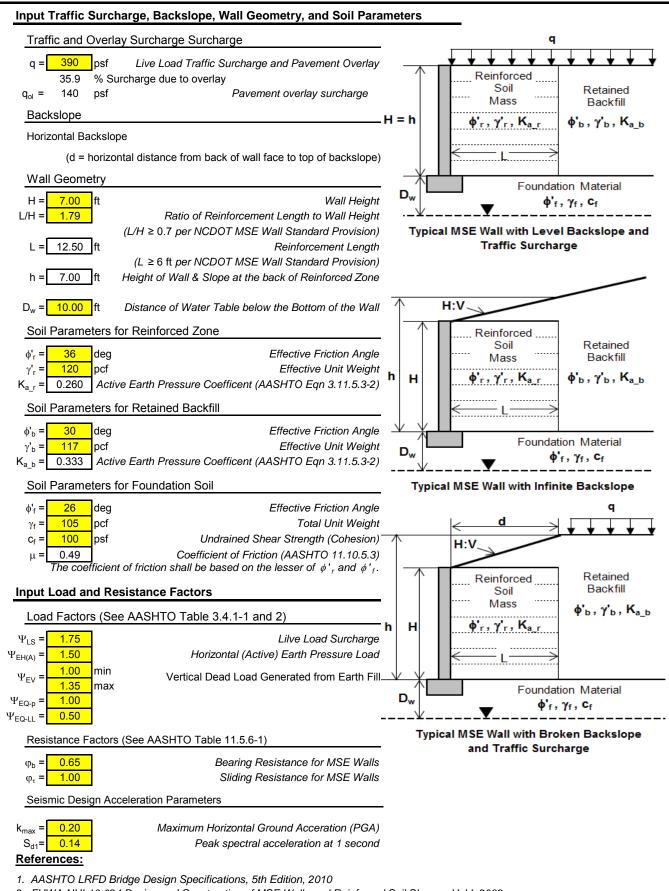
Attachments:

ECS SOUTHEAST, LLP

Jacob E. Erickson, E.I. Geotechnical Staff Project Manager

MSE External Stability Results

MSE Global Stability Results Geotechnical Notes on Plans Marc F. Plotkin, P.E., D.GE Principal Engineer SC Registration No. 30565

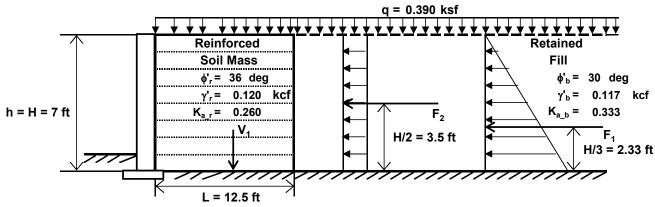


STATE OF NORTH CAROLINA

TIP NO.: COUNTY: SUBJECT: LRFD External Stability Analysis for MSE Walls I-85 Wall 18 JEE PREPARED BY: DATE: 05/22/18 STATION: 413+50

DEPARTMENT OF TRANSPORTATION GEOTECHNICAL ENGINEERING UNIT 1589 MAIL SERVICE CENTER STR. NO.: CHECKED BY: DATE: SHEET: OF

- 2. FHWA-NHI-10-024 Design and Construction of MSE Walls and Reinforced Soil Slopes Vol I, 2009
- 3. SCDOT Geotechnical Design Manual version 1.1, 2010



WBS NO.: TIP NO.: COUNTY: SUBJECT: LRFD External Stability Analysis for MSE Walls I-85 Wall 18 413+50

PREPARED BY: JEE DATE: 05/22/18 STATION:

CHECKED BY: DATE: STR. NO.:

Calculate Forces acting on Wall

External Stability for MSE Walls: Earth Pressure - Level Backslope with Surcharge Case (Based on FHWA Figure 4-2 and AASHTO Figure 11.10.5.2-1) All Forces are Calculated per Unit Length of Wall **Figure Not Drawn to Scale**

Forces from Vertical Earth Loads

 V_1 = Total Vertical Force from the Reinforced Soil Mass = $(\gamma'_r)(H)(L)$

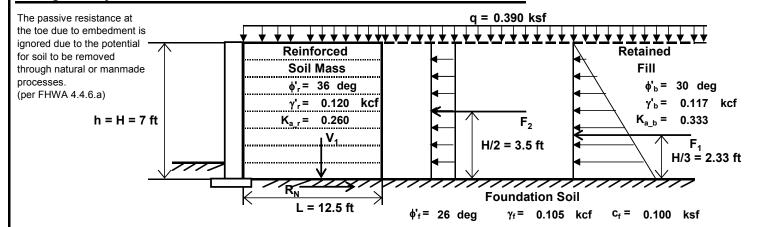
= (0.120 kcf)(7.00 ft)(12.50 ft) = 10.500 kips

Forces from Lateral Earth Pressure

 F_1 = Total Force Generated from Lateral Earth Pressure = $0.5(\gamma'_b)(H^2)(K_{ab})$

= $(0.5)(0.117 \text{ kcf})(7.00 \text{ ft})^2(0.333)$ = 0.955 kips

FHWA Eqn. 4-5


SHEET: 2 OF 8

Horizontal Force from Traffic Surcharge

 F_2 = Force Generated from Traffic Surcharge = (q)(H)(K_{ab})

= (0.390 ksf)(7.00 ft)(0.333) =0.909 kips FHWA Eqn. 4-6

Sliding Stability - AASHTO 11.10.5.3, AASHTO 10.6.3.4, and FHWA 4.4.6.a

External Stability for MSE Walls: Sliding Stability - Level Backslope with Surcharge Case (Based on FHWA Figure 4-2 and AASHTO Figure 11.10.5.2-1) All Forces are Calculated per Unit Length of Wall **Figure Not Drawn to Scale**

Calculate Factored Sliding Resistance (R_R)

 $R_R = \phi R_N = \phi_\tau R_\tau$ AASHTO Eqn. 10.6.3.4-1

WBS NO.:	TIP NO.:	COUN	TY:				
SUBJECT:	LRFD External Sta	bility Analysis for	MSE Walls				
I-85 Wall 18							
PREPARED BY: JEE	DATE: 05/22/18	STATION:	413+50				
CHECKED BY:	DATE:	STR. NO.:	SHEET: 3 OF 8				

Sliding Stability Continued - AASHTO 11.10.5.3, AASHTO 10.6.3.4, and FHWA 4.4.6.a

 φ_{τ} = Resistance Factor for Sliding = 1.00

AASHTO Table 11.5.6-1

R_r = Nominal Sliding Resistance between Reinforced Soil Mass and Foundation Soil

 $= \Psi_{EV}(V_1)\mu + (c_f)(L)$

FHWA Eqn. 4-12 and AASHTO 10.6.3.4

 Ψ_{EV} = Load Factor for Dead Load of Earth Fill = 1.00

AASHTO Table 3.4.1-1

(Use the Min Value of $\Psi_{\rm EV}$ per FHWA 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5)

V₁ = Total Vertical Force from the Reinforced Soil Mass =

 μ = Coefficent of Friction between Reinforced Soil Mass and Foundation Soil = 0.49

AASHTO 11.10.5.3

 c_f = Cohesion for Foundation Soil = 0.100 ksf

L = Reinforcement Length = 12.50 ft

 $R_r = (1.00)(10.50 \text{ kips})(0.49) + (0.100 \text{ ksf})(12.50 \text{ ft}) = 6.40 \text{ kips}$

 $R_R = (1.00)(6.40 \text{ kips}) = 6.40 \text{ kips}$

Calculate Factored Horizontal Driving Force (Pd)

 $P_d = (\Psi_{EHA})(F_1) + (\Psi_{LS})(F_2)$

FHWA Eqn. 4-9

 Ψ_{EHA} = Load Factor for Horizontal (Active) Earth Pressure =

AASHTO Table 3.4.1-1

F₁ = Force Generated from Lateral Earth Pressure =

FHWA Egn. 4-5

 Ψ_{LS} = Load Factor for Horizontal (Active) Earth Pressure =

AASHTO Table 3.4.1-1

F₂ = Force Generated from Traffic Surcharge =

0.909 kips

1.50

0.955 kips

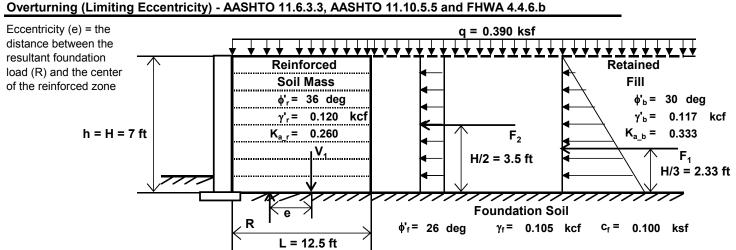
1.75

 $P_d = (1.50)(0.955 \text{ kips}) + (1.75)(0.909 \text{ kips}) =$

FHWA Eqn. 4-6

Check Sliding

Calculated Resistance Factor


3.023 kips

 $P_d/(Rr/\varphi_t) = 0.47$

 $\mathbf{R}_{\mathbf{R}}$ must be greater than or equal to $\mathbf{P}_{\mathbf{d}}$

6.395 kips ≥ 3.023 kips

OK

External Stability for MSE Walls: Overturning - Level Backslope with Surcharge Case (Based on FHWA Figure 4-7 and AASHTO Figure 11.10.5.2-1)

Figure Not Drawn to Scale - All Forces are Calculated per Unit Length of Wall Figure Not Drawn to Scale

Calculate Eccentricity (e)

$$e = \frac{\Psi_{EHA}F_1(H/3) + \Psi_{LS}F_2(H/2)}{\Psi_{EV}V_1}$$

FHWA Eqn. 4-15

WBS NO.:		_ TIP N	10.:		COUNTY:					
SUBJECT:	LRFD External Stability Analysis for MSE Walls									
			I-85 Wa	all 18						
PREPARED BY:	JEE	DATE:	05/22/18	STATI	ON:	413-	⊦ 50			
CHECKED BY:		DATE:		STR. N	VO.: 5	SHEET:	4	OF	8	

Overturning (Limiting Eccentricity) Continued - AASHTO 11.6.3.3, AASHTO 11.10.5.5 and FHWA 4.4.6.b

 Ψ_{EHA} = Load Factor for Horizontal (Active) Earth Pressure = 1.50

 Ψ_{EV} = Load Factor for Dead Load of Earth Fill = 1.00

(Use the Min Value of $\Psi_{\rm EV}$ per FHWA 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5)

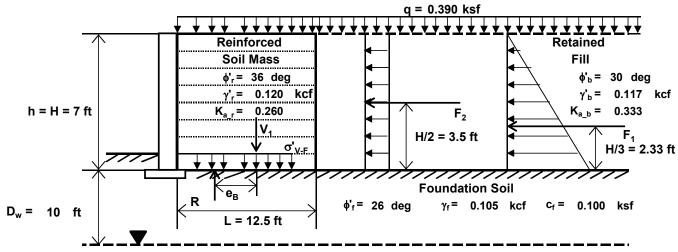
 Ψ_{LS} = Load Factor for Surcharge = 1.75

 F_1 = Force Generated from Lateral Earth Pressure = 0.955 kips

 F_2 = Force Generated from Traffic Surcharge = 0.909 kips

V₁ = Total Vertical Force from the Reinforced Soil Mass = 10.500 kips

H = MSE Wall Height = 7.00 ft


 $e = \frac{(1.50)(0.955 \text{ kips})(2.33 \text{ ft}) + (1.75)(0.909 \text{ kips})(3.50 \text{ ft})}{(1.00)(10.500 \text{ kips})}$

= 0.85 ft

Check Eccentricity

e must be less than or equal to L/4 per AASHTO 11.6.3.3 0.85 ft \leq 3.13 ft OK

Bearing Resistance (General Shear) - AASHTO 11.10.5.4, AASHTO 10.6.3.1, and FHWA 4.4.6.c

External Stability for MSE Walls: Bearing Resistance - Level Backslope with Surcharge Case
(Based on FHWA Figure 4-7 and AASHTO Figure 11.10.5.2-1)

All Forces are Calculated per Unit Length of Wall
Figure Not Drawn to Scale

Calculate Eccentricity for Bearing, (e_B)

$$e_{B} = \frac{\Psi_{EHA}F_{1}(H/3) + \Psi_{LS}F_{2}(H/2)}{\Psi_{EV}V_{1} + \Psi_{LS}qL}$$
 FHWA Eqn. 4-19

 Ψ_{EHA} = Load Factor for Horizontal (Active) Earth Pressure = 1.50 AASHTO Table 3.4.1-1

 Ψ_{EV} = Load Factor for Dead Load of Earth Fill = 1.35 AASHTO Table 3.4.1-1 and FHWA 4.4.6.a

(Use the Max Value of Ψ_{EV} per FHWA 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5)

 Ψ_{LS} = Load Factor for Surcharge = 1.75 AASHTO Table 3.4.1-1

 F_1 = Force Generated from Lateral Earth Pressure = 0.955 kips FHWA Eqn. 4-5 F_2 = Force Generated from Traffic Surcharge = 0.909 kips FHWA Eqn. 4-6

 V_1 = Total Vertical Force from the Reinforced Soil Mass = 10.500 kips

WBS NO.:	TIP NO.:	COUN	TY:						
SUBJECT:	BJECT: LRFD External Stability Analysis for MSE Walls								
	I-85 Wa	all 18							
PREPARED BY: JEE	DATE: 05/22/18	STATION:	413+50						
CHECKED BY:	DATE:	STR. NO.:	SHEET: 5 OF 8						

AASHTO Eqn. 10.6.3.1.2a-1 AASHTO Eqn. 10.6.3.1.2a-1

AASHTO Table 10.6.3.1.2a-1

AASHTO Table 10.6.3.1.2a-1 AASHTO Table 10.6.3.1.2a-2

AASHTO Table 11.5.6-1

AASHTO Table 3.4.1-1

AASHTO Eqn. 10.6.3.1.2a-1

AASHTO C11.10.5.4

		_			
Daarina	Resistance Continued	(Canaral Chaar	\	**************************************	
bearing	i Kesisiance Continued	(General Shear) - AASHTU TT.TU.S.4.	AASHTU 10.0.3.1	. and Fova 4.4.6.C
	,	(, , , , , , , , , , , , , , , , , , , ,		,

$$H = MSE Wall Height = 7.00 ft$$

$$e_{B} = \frac{(1.50)(0.955\text{kips})(2.33\text{ft}) + (1.75)(0.909\text{kips})(3.50\text{ft})}{(1.35)(10.5\text{kips}) + (1.75)(0.390\text{kips})(12.50\text{ft})}$$

$$= 0.39 \text{ ft}$$

Calculate Nominal Bearing Resistance, (qn)

$$q_n = c_f N_c + 0.5 \gamma B' N_{\gamma} C_{w_{\gamma}}$$

$$N_c$$
 = Bearing Capacity Factor (based on ϕ'_f) = 22.30

$$\gamma_f$$
 = Total Unit Weight for Foundation Soil = 0.105 kcf

B' = Effective Foundation Width =
$$L - 2e_B$$

$$N_{\gamma}$$
 = Bearing Capacity Factor (based on ϕ'_f) = 12.50

$$C_{w_{\gamma}}$$
 = Correction Factor to Account for Location of Groundwater Table = 0.8

$$q_n = (0.100 \text{ ksf})(22.30) + (0.5)(0.105 \text{ kcf})(11.72 \text{ ft})(12.50)(0.80)$$

Calculate Factored Bearing Resistance, (q_r)

$$q_r = \phi_b q_n$$
 AASHTO Eqn. 10.6.3.1.1-1

$$\phi_b$$
 = Resistance Factor for Bearing = $\frac{0.65}{q_n}$ = Nominal Bearing Resistance = $\frac{8.383}{q_n}$ ksf

$$q_r = (0.65)(8.383 \text{ ksf}) = 5.449 \text{ ksf}$$

Calculate Factored Vertical Bearing Pressure at the base, (q_{V-F})

$$\sigma_{V-F} = \frac{\Psi_{EV}V_1 + \Psi_{LS}qL}{1 - 2e}$$

$$\Psi_{\text{EV}}$$
 = Load Factor for Dead Load of Earth Fill = $\frac{1.35}{\text{USe the Max Value of } \Psi_{\text{EV}}}$ per FHWA 4.4.6.c, AASHTO C3.4.1, and AASHTO C11.5.5)

$$V_1$$
 = Total Vertical Force from the Reinforced Soil Mass = 10.500 kips

$$\Psi_{LS}$$
 = Load Factor for Surcharge = $\frac{1.75}{2.000}$

$$\sigma_{\text{V-F}} = \frac{(1.35)(10.50\text{ kips ft}\,) + (1.75)(0.390\text{ ksf}\,)(12.50\text{ ft}\,)}{12.50\text{ ft}\,-2(0.39\text{ ft}\,)}$$

Check Bearing

Calculated Resistance Factor

q_R must be greater than or equal to q_{V-F}

OK

 $\sigma_{V-F}/q_n =$ 0.23

WBS NO.:	TIP NO.: COUNTY:							
SUBJECT: LRFD External Stability Analysis for MSE Walls								
	I-85 Wall 18							
PREPARED BY: JEE DATE: 05/22/18 STATION: 413+50								
CHECKED BY:	DATE:	STR. NO.:	SHEET: 6 OF 8					

Bearing Resistance (Local/Punching Shear) - AASHTO 11.10.5.4, AASHTO 10.6.3.1.2b, and FHWA 4.4.6.c

Local and Punching shear failure occurs in loose or compressible soils and in weak soils under slow (drained) loading. This mode of failure will only be considered for foundation material that is cohesive.

To prevent Local/Punching Shear on weak cohesive soils

 $(\gamma_r)(H) \le 3c_f$ FHWA Eqn. 4-24

 γ_r = Effective Unit Weight of Reinforced Soil Mass = 0.120 kcf

H = Height of MSE Wall = 7.00 ft

0.840 ksf > 0.300 ksf

c_f = Undrained Shear Strength (Cohesion) of Foundation Soil = 0.100 ksf

 $(0.120 \text{ kcf})(7.00 \text{ ft}) \le 3 (0.100 \text{ ksf})$

The foundation is subject to Local/Punching Shear. Check Reduced Bearing Resistance

Calculate Reduced Nominal Bearing Resistance, (qn)

 $q_n = c_f^* N_c + 0.5 \gamma B' N_{\gamma} C_{w\gamma}$ AASHTO Eqn. 10.6.3.1.2a-1

 c_{f}^{*} = Reduced Cohesion for Foundation Soil = $0.67c_{f}$

= 0.67 (0.100 ksf) = 0.067 ksf N_c = Bearing Capacity Factor (based on f^*_f) = 13.10

 N_c = Bearing Capacity Factor (based on f^*_f) = 13.10 AASHTO Table 10.6.3.1.2a-1

 γ = Effective Unit Weight for Foundation Soil = 0.105 ksf

B' = Effective Foundation Width = $L - 2e_B$

= 12.5 ft - 2 (0.39 ft) = 11.72 ft

 N_y = Bearing Capacity Factor (based on ϕ'^*_f) = 4.10

4.10 AASHTO Table 10.6.3.1.2a-1

AASHTO 10.6.3.1.2b-1

AASHTO C11.10.5.4

AASHTO 10.6.3.1.2b-2

AASHTO Table 11.5.6-1

 $C_{w_{\gamma}}$ = Correction Factor to Account for Location of Groundwater Table = 0.8 AASHTO Table 10.6.3.1.2a-2

 ϕ'^*_f = Reduced Friction Angle for Foundation Soil = $\tan^{-1}(0.67 \tan \phi'_f)$

 $= tan^{-1}[0.67 tan (26 deg)] = 18 deg$

 $q_n = (0.067 \text{ ksf})(13.10) + (0.5)(0.105 \text{ kcf})(12.50 \text{ ft})(14.10)(0.8)$

= 3.030 ksf

Calculate Reduced Factored Bearing Resistance, (g_r)

 $q_r = \phi_b q_n$ AASHTO Eqn. 10.6.3.1.1-1

φ_b = Resistance Factor for Bearing = 0.65

 q_n = Nominal Bearing Resistance = $\frac{3.030}{3.030}$ ksf AASHTO Eqn. 10.6.3.1.2a-1

 $q_r = (0.65)(3.030 \text{ ksf}) = 1.970 \text{ ksf}$

Check Bearing

q_R must be greater than or equal to q_{V-F} 1.97 ksf ≥ 1.937 ksf

ΟK

WBS NO.: ____ TIP NO.: COUNTY: SUBJECT: LRFD External Stability Analysis for MSE Walls I-85 Wall 18 PREPARED BY: JEE DATE: 05/22/18 STATION: 413+50 STR. NO.: CHECKED BY: DATE: SHEET: 7 OF 8

Seismic Stablity - SCDOT GDM Section 14.12

Calculate Wave Scattering Effects

Wave Scattering Coefficient, $\alpha_w = 1+0.01H((0.5\beta)-1<1.0$

SCDOT Equation 13-103

$$\alpha_{\rm w} = 0.9545$$

Ground Motion Index, $\beta = k_{max}/S_{d1} = 0.70$

SCDOT Equation 13-104

Average seismic horizontal coefficient due to wave scattering

$$k_h = \alpha_w * k_{max} = 0.2$$

SCDOT Equation 13-102

Calculate Seismic Active Earth Pressure Coefficinet (Mononobe -Kobe Method) SCDOT GDM Section 14.4.1

Seismic Active Earth Pressure Coefficient Reinforced Soils, K_{AEr} = 0.584

Seismic Active Earth Pressure Coefficient Retained, K_{AEb} =

0.678

$$K_{ae} = \frac{\cos^2(\phi - \Psi - \theta)}{\cos(\Psi)\cos^2(\theta)\cos(\delta + \theta + \Psi) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \Psi - \beta)}{\cos(\delta + \theta + \Psi)\cos(\beta - \theta)}}\right]^2}$$
 Equation 14-2

Where,

unit weight of soil

= height of wall or effective height of wall (heff)

angle of internal friction of soil

Ψ tan⁻¹[k_h/(1-k_v)]

angle of friction between soil and wall

horizontal acceleration coefficient

vertical acceleration coefficient, typically set to zero.

backfill slope angle

angle of backface of the wall with the vertical

Reinforced Soil

Retained Soil

$$\varphi$$
 = 36.0 deg

$$\varphi$$
 = 30.0 deg

$$\Psi$$
 = 11.3 deg

$$\Psi$$
 = 11.3 deg

$$\theta = 0 \text{ deg}$$

$$\theta = 0 \deg$$

$$\delta = 0$$
 deg

$$\delta = 0.00 \text{ deg}$$

Calculate Inertial Wall Width,
$$B_{inertial} = \omega H$$

coefficient,
$$\omega$$
 = 0.70

Calculate Active Earth Thrust Force,
$$P_{AE} = \gamma_p * 0.5 K_{AEr} * \gamma_p * H^2$$

Calculate Intertial Reinforced Soil Mass Force,
$$P_{IR} = \gamma_p^* k_{avg}^* B_{inertial}^* H_{wall}^* = 0.12 \text{ kips}$$

$$\frac{1}{12}$$
 = 0.12 kins

Dead Load Surcharge Force,
$$P_{DC}$$
 = Live Load Surcharge Force, P_{LL} =

Total Seismic Driving Force, $F_H = 3.3$ kip Calculated Resistance Factor, $\varphi = F_H/R_t = 0.52$

WBS NO.:	TIP NO.:	COUN	TY:
SUBJECT:	LRFD External Sta	bility Analysis for	MSE Walls
	I-85 Wa	all 18	
PREPARED BY: JEE	DATE: 05/22/18	STATION:	413+50
CHECKED BY:	DATE:	STR. NO.:	SHEET: 8 OF 8

Calculate Eccentricity for Bearing, (e_B)

$$e_{B} = \frac{\Psi_{\text{EQ-P}} F_{1s}(H/2) + \Psi_{\text{EQ-LL}} F_{2s}(H/2)}{\Psi_{\text{EV}} V_{1} + \Psi_{\text{EQ-LL}} qL}$$

FHWA Eqn. 4-19

 Ψ_{EHAeq} = $\Psi_{\text{EQ-p}}$ = Load Factor for Horizontal (Active) Earth Pressure = 1.00

AASHTO Table 3.4.1-1

 Ψ_{EV} = Load Factor for Dead Load of Earth Fill = AASHTO Table 3.4.1-1 and FHWA 4.4.6.a 1.00

(Use the Min Value of $\Psi_{\rm EV}$ per FHWA 4.4.6.a, AASHTO C3.4.1, and AASHTO C11.5.5)

 $\Psi_{LSeq} = \Psi_{EQ-p} = Load Factor for Surcharge =$

2.725 kips

F_{1s} = Force Generated from Lateral Earth Pressure = F_{2s} = Force Generated from Traffic Surcharge = 0.593 kips FHWA Egn. 4-5 FHWA Eqn. 4-6

AASHTO Table 3.4.1-1

V₁ = Total Vertical Force from the Reinforced Soil Mass = 10.500 kips

FHWA Eqn. 4-19

q = Live Load Traffic Surcharge = 0.250

H = MSE Wall Height = 7.00 ft

L = Reinforcement Length = 12.50 ft

$$e_{B} = \frac{ (\ \ 1.00 \ \)(\ \ \ 2.725 \ \ kips \)(\ \ \ \ \ 3.50 \ \ ft \) + (\ \ \ \ 1.00 \ \)(\ \ \ 0.593 \ \ kips \)(\ \ 3.50 \ \ ft \) }{ (\ \ 1.00 \ \)(\ \ \ 10.50 \ \ ksf \)(\ \ 12.50 \ \ ft \) }$$

$$= 0.85 \text{ ft}$$

Calculate Factored Vertical Bearing Pressure at the base, (q_{V-F})

$$\sigma_{\text{V-F}} = \frac{\Psi_{\text{EQ-P}}V_1 + \Psi_{\text{EQ-LS}}qL}{L - 2e_B}$$

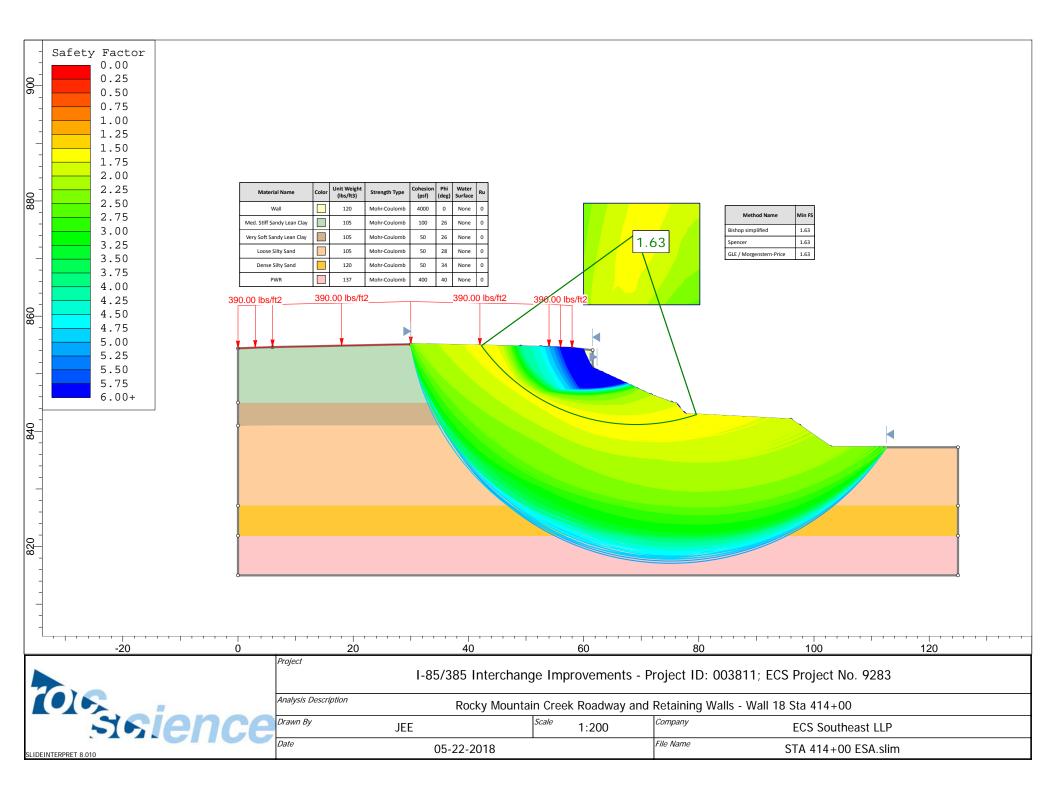
FHWA Eqn. 4-20

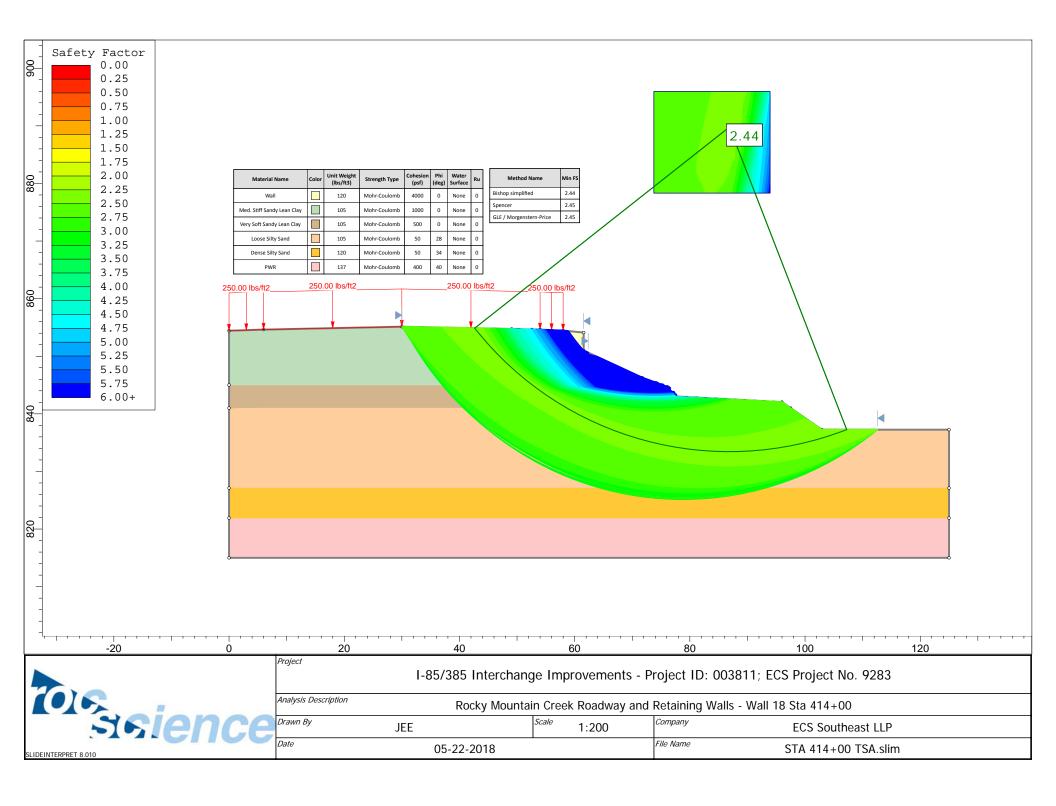
 $\Psi_{\text{EQ-p}}$ = Load Factor for Dead Load of Earth Fill =

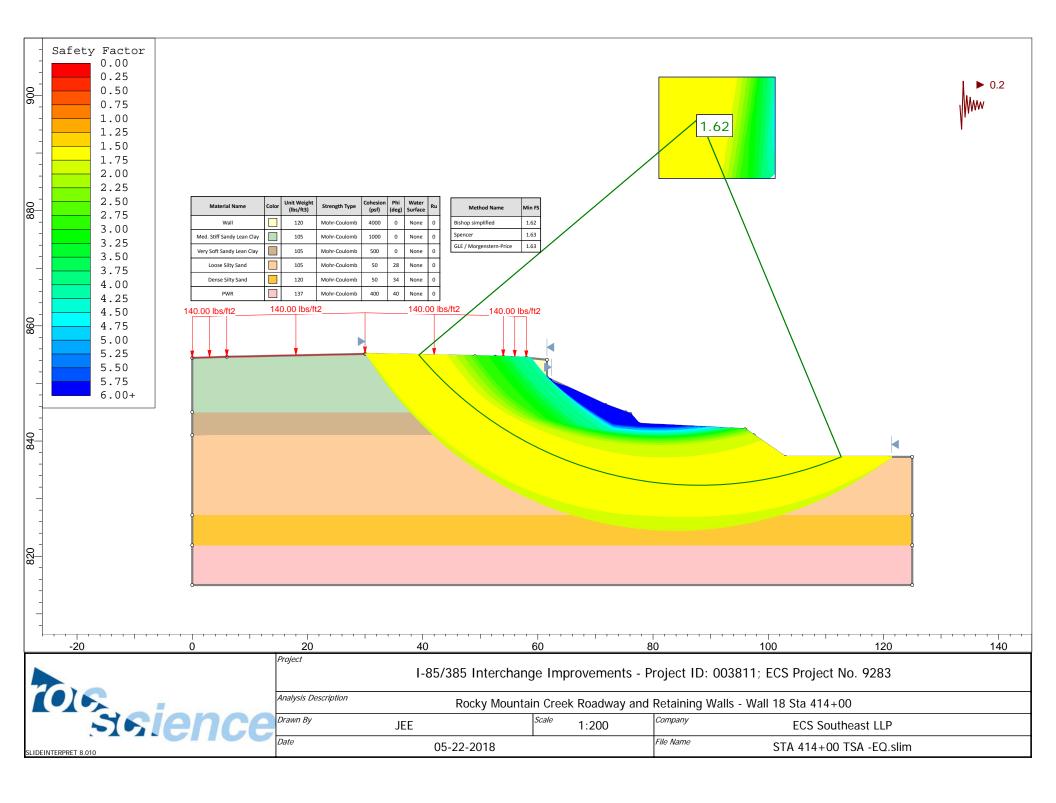
V₁ = Total Vertical Force from the Reinforced Soil Mass = 10.500 kips

 Ψ_{LSeq} = Ψ_{EQ-II} = Load Factor for Surcharge =

1.00 q = Live Load Traffic Surcharge = 0.250 ksf


12.50 ft L = Reinforcement Length =


e_B = Eccentricity for Bearing = 0.85 ft


$$\sigma_{V-F} = \frac{(1.00)(10.50 \text{ kips})(ft) + (1.00)(0.250 \text{ ksf})(12.50 \text{ ft})}{12.5 \text{ ft} - 2(0.85 \text{ ft})}$$

Calculated Resistance Factor

$$\sigma_{V-F}/q_{n} = 0.17$$

NOTES ON PLANS

The following notes apply to borrow materials:

Provide borrow materials meeting the following minimum requirements:

- A sandy material (35% or less passing 0.075 mm) with a minimum total soil unit weight, γ_{total} of 110 pcf, with a maximum dry density exceeding 100 pcf.
- Minimum friction angle, ϕ , of 30° and cohesion, c, of 50 psf for embankment fill, alternatively embankment fill may consist of a minimum friction angle (ϕ) of 34° with zero cohesion.
- No. 57 Stone backfill for Mechanically Stabilized Earth Walls

In addition, determine the moisture-density relationship and classification of the material. Test and submit the classification, moisture-density relationship, and soil strength parameters of the material to the Engineer for acceptance. An AASHTO certified laboratory is required to perform the testing. Contact the RPG Geotechnical Engineer for a list of locally available AASHTO certified laboratories. The Department may perform independent testing to assure quality.

Determine the friction angle and cohesion using either direct shear testing or consolidated-undrained triaxial shear testing with pore pressure measurements. Direct Shear testing shall only be performed on soils with a fines content of less than 25 percent. Classification testing includes grain-size distribution with wash #200 sieve, moisture plasticity testing and natural moisture content. Use the Standard Proctor test to determine the moisture-density relationship. Remold all samples used in shear strength testing to 95 percent of the Standard Proctor density. Conduct shear strength testing at the initial selection of the borrow pit, any subsequent changes in borrow pits, and for every 10,000 cy of materials placed. Perform classification testing for every 50,000 cy of materials placed, including the material used for the shear strength testing. Additional shear testing may be required if, in the opinion of the RCE, the materials being placed are different from those originally tested.

If these minimum criteria cannot be met, provide the soil parameters for the intended borrow excavation material for the project site to the Engineer for review and acceptance. After acceptable borrow material is obtained, compact the fill to the required finish grade line using the compactive effort indicated in the Standard Specifications for Highway Construction, Section 205 (Embankment Construction).

The following notes apply to muck excavation:

Any areas identified on the plans and any additional areas that are discovered to deflect or settle may require corrective action as directed by the RCE. This may include undercutting; placing No. 57 stone aggregate that is separated from other borrow materials by a geotextile for separation of sub-grade and sub-base, and/or additional compactive effort to the approval of the RCE.

In areas that require mucking or undercutting, borrow material soil may be placed as a bridge lift as long as the grade on which the material is being placed is at least 2 feet above ground water level. In the event that groundwater does not allow backfilling with a

Final Roadway Geotechnical Engineering Report Rocky Mountain Creek Roadway and Retaining Walls I-85/385 Interchange Improvements Greenville County, South Carolina

borrow material soil, use a No. 57 stone as the bridge lift material. Borrow material bridge lifts may not exceed a 2-foot thickness. The depth at which mucking or undercutting is required is dependent upon encountering a suitable bearing material within the excavation or if a predetermined elevation or depth is required. In most cases, do not undercut more than 3 to 5 feet. The RCE will determine the final mucking or undercutting thickness, unless otherwise specified in the project plans and/or specifications. If a suitable bearing soil is not encountered within this depth range, place a P1 biaxial geogrid with an aperture size of less than or equal to 1 inch and in accordance with the project special provisions beneath a 2-foot thick bridge lift of No. 57 stone. If additional compacted borrow material soil is needed to reach grade, place a geotextile for separation of sub-grade and sub-base between the No. 57 stone and the overlying compacted soil. A bridge lift consisting of borrow material soil may not be placed within 3 feet of the base of the pavement section. Place only compacted borrow material soil or No. 57 stone within this zone. Reference the Standard Specifications for Highway Construction, Earthwork Section, Division 200.

The following notes apply for MSE Wall Subgrades:

Prior to construction of the leveling pad and MSE fill, the RCE shall verify that the retaining wall is founded on subgrade materials possessing the minimum allowable bearing capacity noted on wall plan and elevation sheets. If the RCE determines that the subgrade is unacceptable for placement of MSE fill, the contractor shall undercut the subgrade to the limits directed by the RCE. Unacceptable subgrade materials include, but are not limited to, all high plasticity clays and elastic silts (CH, MH), low plasticity clays and silts (CL, ML) with an unconfined compressive strength less than 2,000 psf, and deleterious debris. Replacement of undercut material will be with Backfill Material, meeting requirements outlined in the SCDOT Standard Specifications for Highway Construction.

The foundation area for the MSE walls might have scattered pockets of soft soils that might be present at the surface or just below the surface for the base of the MSE fill. These soft pockets are only expected to extend a few feet below the base of the MSE fill. The quality assurance representative shall proofroll the subgrade in this area and/or conduct dynamic cone tests at regular intervals to determine that the subgrade meets the requirements of the paragraph above.

There are several locations along the roadway alignment where proposed drainage structures are situated in front of (i.e. parallel) MSE walls, or where new and existing draining structures pass beneath the MSE walls. Where new pipes are parallel to the proposed wall, the pipe should be installed prior to the proposed wall or the wall design should account for the temporary reduction in passive resistance. Where pipes pass beneath walls, the pipes should be designed to account for the increased loading associated with the wall backfill. We recommend the top of each pipe be situated a minimum of 1 foot below the bottom of retaining.

The following notes apply for settlement and displacement monitoring:

The contractor shall establish a monitoring program consisting of settlement instruments. The settlement monitoring program must include establishing settlement monitoring instruments on the subgrade soils prior to fill placement, and at design

Final Roadway Geotechnical Engineering Report Rocky Mountain Creek Roadway and Retaining Walls I-85/385 Interchange Improvements Greenville County, South Carolina

pavement subgrade elevation. Settlement monitoring instruments are required at a spacing of every 100 feet along MSE Walls and every 500 feet along embankments with new fill thicknesses exceeding 20 feet. Instruments shall be established at the centerline of road and edge of pavement. Settlement monitoring shall continue until three consecutive measurements demonstrate the rate of settlement is less than 0.1 inches per year. No more than one measurement shall be obtained on a single day.

A minimum of 2 measurements shall be obtained on monuments prior to fill placement, and instruments shall be measured weekly during fill placement. Instrumentation measurements shall be provided to the Geotechnical Engineer within 24 hours of measurements for interpretation. Interpreted results shall be provided to the RCE.

The following notes apply to slope construction:

Where the new fill meets the existing slope, the existing slope shall be benched to limit the potential for a preferential failure surface and to allow compaction at the interface. Benches shall have a minimum horizontal length of 8 feet and a vertical rise of no more than 3 feet. Fill slopes of 2H:1V or steeper shall be overbuilt (i.e. fill should temporarily extend beyond the final slope face) to allow compaction at the slope face. After compaction is complete, the slope may be regraded to the final inclination.

Should seeps or thick lenses of highly plastic soils be observed in the planned fill and cut slopes that are steeper than 2H:1V, ECS must be contacted to determine if the steeper slopes may be constructed as planned or if slope flattening or reinforcing is required. Similarly, if soft or wet ground conditions are observed at the base of planned fill embankments, the QA representative must determine the limits of undercutting required or required in-situ treatment.

The following Plan Notes apply to Mechanically Stabilized Earth walls:

Reinforced Backfill (Granular Fill or stone.)

Internal Friction Angle (deg) = 36
Total Unit Weight = 120 pcf
Surcharge Dead Load for Pavement Overlay = 140 psf
Active Earth Pressure Coefficient = 0.26

Retained Backfill

Internal Friction Angle (deg) = 30 Total Unit Weight = 117 pcf Active Earth Pressure Coefficient = 0.33 Final Roadway Geotechnical Engineering Report Rocky Mountain Creek Roadway and Retaining Walls I-85/385 Interchange Improvements Greenville County, South Carolina

Wall 17 – I-85 Station
Foundation Soils
Total – Internal Friction Angle (deg) = 26
Total – Cohesion = 0 psf
Effective – Internal Friction Angle (deg) = 26
Effective – Cohesion = 0 psf

Wall Height Min. Breq Factored Bearing (Static) Factored Bearing (Seismic) $0 < H \le 7.5$ 14.5 ft 2,000 psf 3,100 psf

Wall 18 – I-85 Station 413+00 to 415+00
Foundation Soils
Total – Internal Friction Angle (deg) = 0
Total – Cohesion = 1000 psf
Effective – Internal Friction Angle (deg) = 26
Effective – Cohesion = 100 psf

Wall Height Min. Breq Factored Bearing (Static) Factored Bearing (Seismic) 3 < H ≤ 7 12.5 ft 5,400 psf 8,400 psf

Stantec Consulting Services Inc.

4969 Centre Pointe Drive Suite 200, North Charleston SC 29418-6952

April 26, 2015
Revised April 26, 2015
Revised March 29, 2018

File: 171001537

Attention: Rocque Kneece CECS, Inc 2000 Part Street, Suite 201 Columbia SC, 29201

Dear Rocque,

Reference: I-85 / I-385 Interchange – FEMA No-Rise Study – SCDOT Review

Introduction

Stantec performed a FEMA No-Rise analysis for an approximately 5000 foot reach of Rocky Creek at Interstate 85 in Greenville, South Carolina. Per FEMA regulations (44 CFR 60.3(d)(3)), a No-Rise analysis must demonstrate a zero-increase (0.00 feet) in the base flood elevation (BFE), floodway elevations, or floodway widths through hydrologic and hydraulic analysis before land development occurs within a floodway. A No-Rise analysis was performed due to proposed interstate modifications within the effective floodway.

The No-Rise analysis utilized the effective FEMA hydraulic model (HEC-RAS version 4.0) which provided cross sections, surveyed structures, and hydrology (steady-state flow rates). Detailed design of the proposed conditions were provided to Stantec and then incorporated into the hydraulic model using HEC-RAS version 4.1. Water surface profiles were produced for the 2-, 10-, 25-, 50-, 100-, and 500-year storm events.

Effective Model

The Flood Insurance Rate Maps for Greenville County became effective in August 18, 2014, and the project area is located in FEMA Map Number 45045C0407E. The Rocky Creek hydraulic model is comprised of the main channel and 6 additional tributaries. There are 2 areas of interest for this No-Rise study. The first location is at the I-85 culvert bridge crossing, and the second location is approximately 2500 feet upstream of the culvert bridge where Rocky Creek meanders back towards I-85. This location was included into the study because of the close proximity between the 100-year floodplain, floodway, and proposed I-85 modifications.

Duplicate Effective Model

The duplicate effective model is a truncated reproduction of the effective model for the specific project area. The two areas of interest described above are located between cross sections 24541 and 28374. However, the actual project limits for the No-Rise analysis are extended to 3 additional upstream cross sections and 1 additional downstream cross section. The project limits

Design with community in mind

April 26, 2015 Rocque Kneece Page 2 of 5

Reference: I-85 / I-385 Interchange – FEMA No-Rise Study – SCDOT Review

for the No-Rise analysis are defined from cross section 24314 to 28944 as seen in the main channel of the hydraulic model. Boundary conditions for each water surface profile are known water surface elevations from the results of the original effective model. Results of the duplicate effective model come within 0.1 feet of the effective model.

Corrected Effective Model

A corrected effective model includes any significant corrections or errors to the effective model. For this study, no corrections or errors were discovered in the effective model.

Existing Conditions Model

The existing conditions model reflects any modifications or updated topography within the project area since the date of the effective model. Because the effective model was dated August 2014, no modifications or topography were incorporated into the model.

Proposed Conditions

Land development activity within the floodway includes I-85 road widening for portions of the north bound and south bound lanes. No modifications to the existing box culverts are proposed. All proposed modifications described in this report are within the 300 foot I-85 right-of-way.

The hydraulic methodologies for the proposed conditions model match the effective model. For instance, no additional cross sections were created, contraction/expansion coefficients were not revised, the jersey barrier was disregarded, and the bridge modeling approach was not adjusted. However, Manning's n values were adjusted as necessary to match proposed conditions.

The proposed conditions were the result of an iterative process to add or reduce modifications to reach zero increase (0.00) in the BFE, floodway elevation, and floodway width. For instance, retaining walls are proposed to limit the embankment impact to the BFE. There is approximately 1400 LF of retaining wall proposed in the southbound lane, and approximately 800 LF of retaining wall proposed in the north bound lane. The proposed modifications were represented in the hydraulic model by overlaying the effective model cross sections, proposed road design stationing centerline, and ESRI aerial imagery in ArcGIS software. The proposed roadway design was the foundation to the proposed conditions hydraulic model. However, the No-Rise analysis is iterative in nature and additional revisions to the proposed roadway design were made. The additional revisions were agreed upon during phone conversations and are not reflected in the original roadway design plans. Upon approval of this report, the intent is to update the roadway design plans with the additional revisions. Proposed conditions within the No-Rise project area are more specifically described by the following:

- 1. I-85 Northbound lane widening between Station 387+00 to Station 422+00
 - a. Proposed conditions incorporated from roadway design plans

April 26, 2015 Rocque Kneece Page 3 of 5

Reference: I-85 / I-385 Interchange – FEMA No-Rise Study – SCDOT Review

- b. Additional revisions include the off-ramp taper beginning at Station 414+00 was shifted north to Station 421+00. Stantec was instructed to maintain 17 feet between existing edge of pavement and outside edge of guardrail from Station 414+00 to Station 421+00, then maintain 21 feet starting at STA422+00
- c. Additional revisions include off ramp taper starting at 421+00. Revisions also include a reduction in the earthen shoulder from approximately 410+00 to 426+00 per the revised plans.
- 2. I-85 Southbound lane widening between Station 387+00 to Station 412+00
 - a. Proposed conditions incorporated from roadway design plans
 - b. Additional revisions include:
 - i. Reduced embankment impact to 10 feet from existing edge-of-pavement at Station 410+00
 - ii. Southbound lane extended 18 additional feet between Station 386+00 and Station 400+00
- 3. I-85 Northbound retaining wall between Station 414+00 to Station 422+00 Station 416+00
 - a. A retaining wall was incorporated as an additional revision at Cross Section 24541 and Cross Section 24668 with embankment cuts
 - b. Additional revisions include embankment cuts at Cross Sections 24541 and 24668 per the proposed plans.
- 4. I-85 Southbound retaining wall between Station 387+00 to Station 401+00
 - a. A retaining wall was incorporated as an additional revision at Cross Sections 28374, 28216, 27999, 27809, 27572, and 27339

April 26, 2015 Rocque Kneece Page 4 of 5

Reference: I-85 / I-385 Interchange – FEMA No-Rise Study – SCDOT Review

Results

Since there was no corrected effective model and no modifications to topography/structures needed, the existing conditions model would be a replica of the duplicate effective model. Therefore, the proposed conditions model results were compared against the duplicate effective model. The difference between the two models resulted in a 0.00 feet (or less) increase in the BFE, floodway elevations, and floodway widths thus satisfying the FEMA No-Rise requirement.

Table 1 – No-Rise Analysis Results (BFE)

100-yr Water Surface Elevations (feet NAVD88)										
Cross Section	Eff	Effective		Proposed	Delta					
					(Proposed - Existing)					
Rocky Creek_24314.4			848.25	848.25	0.00					
Rocky Creek_24541.44			849.51	849.5	-0.01					
Rocky Creek_24668.16	AQ	849.9	849.94	849.77	-0.17					
Rocky Creek_25380.96			851.44	851.23	-0.21					
Rocky Creek_25539.36			853.49	853.43	-0.06					
Rocky Creek_25687.2	AR	853.6	853.56	853.5	-0.06					
Rocky Creek_25893.12			853.58	853.53	-0.05					
Rocky Creek_26083.2			853.6	853.54	-0.06					
Rocky Creek_26220.48			853.6	853.55	-0.05					
Rocky Creek_26400	AS	853.6	853.64	853.58	-0.06					
Rocky Creek_26574.24			853.72	853.67	-0.05					
Rocky Creek_26806.56			853.74	853.69	-0.05					
Rocky Creek_27033.6	AT	853.9	853.85	853.8	-0.05					
Rocky Creek_27155.04			853.95	853.94	-0.01					
Rocky Creek_27339.84			854.11	854.1	-0.01					
Rocky Creek_27572.16	AU	854.2	854.19	854.18	-0.01					
Rocky Creek_27809.76			854.49	854.48	-0.01					
Rocky Creek_27999.84			854.91	854.91	0.00					
Rocky Creek_28216.32	AV	856.5	856.48	856.48	0.00					
Rocky Creek_28374.72			857.19	857.19	0.00					
Rocky Creek_28570.08			857.42	857.42	0.00					
Rocky Creek_28707.36	AW	857.4	857.46	857.45	-0.01					
Rocky Creek_28944.96			857.59	857.59	0.00					

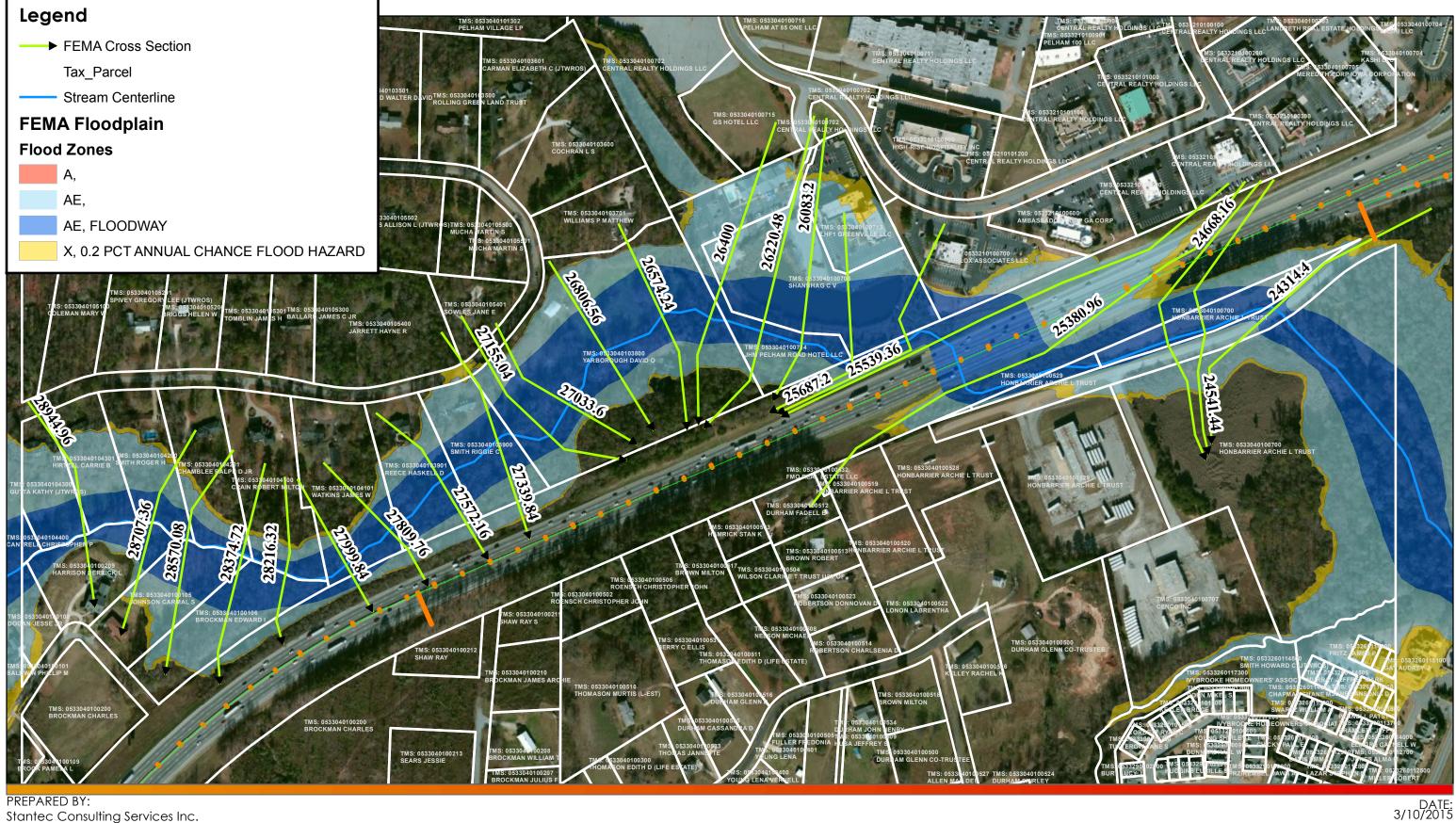
April 26, 2015 Rocque Kneece Page 5 of 5

Reference: I-85 / I-385 Interchange – FEMA No-Rise Study – SCDOT Review

Table 2 – No-Rise Analysis Results (Floodway)

		F	loodway E	levations (feet NAVD88)		Flood	way Width	ıs (feet)
Cross Section		Effective	Existing*	Proposed	Delta	Effective	Existing*	Proposed	Delta
					(Proposed - Existing)				(Proposed - Existing)
Rocky Creek_24314.4			848.98	848.98	0.00		160	160	0.00
Rocky Creek_24541.44			849.95	849.95	0.00		160	160	0.00
Rocky Creek_24668.16	AQ	850.3	850.28	850.20	-0.08	160	160	160	0.00
Rocky Creek_25380.96			851.58	851.50	-0.08		382	382	0.00
Rocky Creek_25539.36			854.35	854.32	-0.03		350	350	0.00
Rocky Creek_25687.2	AR	854.5	854.52	854.49	-0.03	350	350	350	0.00
Rocky Creek_25893.12			854.53	854.50	-0.03		300	300	0.00
Rocky Creek_26083.2			854.53	854.50	-0.03		225	225	0.00
Rocky Creek_26220.48			854.53	854.50	-0.03		225	225	0.00
Rocky Creek_26400	AS	854.6	854.59	854.56	-0.03	225	225	225	0.00
Rocky Creek_26574.24			854.68	854.65	-0.03		270	270	0.00
Rocky Creek_26806.56			854.69	854.66	-0.03		270	270	0.00
Rocky Creek_27033.6	AT	854.8	854.81	854.79	-0.02	270	270	270	0.00
Rocky Creek_27155.04			854.92	854.86	-0.06		270	270	0.00
Rocky Creek_27339.84			855.03	854.97	-0.06		230	230	0.00
Rocky Creek_27572.16	AU	855.2	855.22	855.16	-0.06	215	215	215	0.00
Rocky Creek_27809.76			855.43	855.38	-0.05		155	155	0.00
Rocky Creek_27999.84			855.88	855.84	-0.04		155	155	0.00
Rocky Creek_28216.32	AV	856.9	856.87	856.85	-0.02	155	155	155	0.00
Rocky Creek_28374.72			857.93	857.91	-0.02		235	235	0.00
Rocky Creek_28570.08			858.33	858.32	-0.01		250	250	0.00
Rocky Creek_28707.36	AW	858.3	858.39	858.38	-0.01	250	250	250	0.00
Rocky Creek_28944.96			858.58	858.58	0.00		250	250	0.00

Regards,


STANTEC CONSULTING SERVICES INC.

Shaun Cavey, PE

Project Engineering Specialist

Phone: (843) 740-6345 shaun.cavey@stantec.com

 $sc~u:\ 1710\ active\ 171001537-i-85~\&~i-385~interchange\ design\ drainage\ fema\ 20150301-no_rise_analysis\ report\ 20180329-norise_resubmittal\ 20180329-norise_report.docx$

PREPARED BY:
Stantec Consulting Services Inc.
4969 Centre Pointe Drive, Suite 200
North Charleston, SC 29418
Tel. 843.740.7700
www.stantec.com

ROCKY CREEK NO-RISE STUDY GREENVILLE, SOUTH CAROLINA

PROJECT NO:
SCALE:
1 inch = 300 feet

RD. IO.	STATE	COUNTY	PROJECT ID	ROUTE NO.	SHEET NO.
	S.C.	GREENVILLE	0038III - R02	I-85 / I-385	ILI

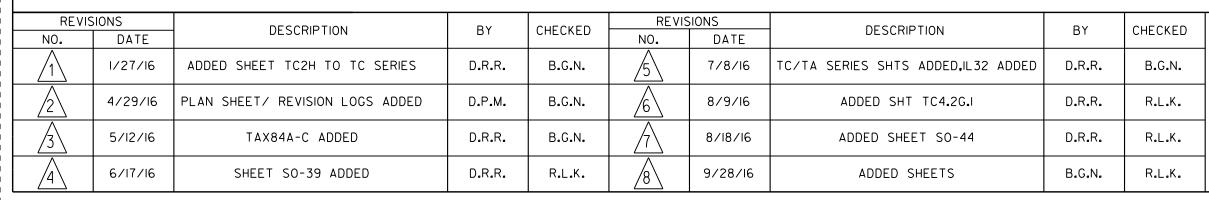
SHEET NO.	DESCRIPTION	TOTAL SHEETS
1	TITLE SHEET	1
1A	RIGHT OF WAY TITLE SHEET	1
IL1	INDEX OF SHEETS	1
IL2 - IL34	PLAN SHEET/REVISION LOGS	33
2	SUMMARY OF ESTIMATED QUANTITIES	OMITTED
3 - 3D	TYPICAL SECTIONS	5
3E	GEOTECHNICAL NOTES	1
3F	DRAINAGE DETAIL SHEET	1
3G	PCCP JOINT DETAILS	1
4 - 4A	RIGHT OF WAY DATA SHEETS	2
		5
4B - 4F	PROPERTY STRIP MAPS	OMITTED
5	GENERAL CONSTRUCTION NOTES PLAN SHEET LAYOUT	1
5A		_
5B- 5L	REFERENCE DATA SHEETS	11
6 - 34	PLAN SHEETS	31
35 - 120	PROFILE SHEETS	86
121	CURB PROFILES	1
D1 - D33	DRAINAGE SHEETS	35
TC1 - TC18.2	TEMPORARY TRAFFIC CONTROL PLANS	287
TS1 - TS164	TEMPORARY SIGNING PLANS	167
TA - TAX235	TEMPORARY ROADWAY PLANS	290
PM1 - PM29	PAVEMENT MARKING PLANS	29
SN1 - SN 96	SIGNING PLANS	96
SL1 - SL29	SIGN LIGHTING PLANS	29
S01 - SC9	ROADWAY STRUCTURE SHEETS	117
EC1 - EC10	EROSION CONTROL PLANS	10
I-85 X1 - I-85 X113	I-85 CROSS SECTIONS	113
I-85 NBCD X1 - I-85 NBCD X24	I-85 NBCD CROSS SECTIONS	24
PELHAM X1 - PELHAM X6	PELHAM RAMP CROSS SECTIONS	6
I-385 X1 - I-385 X103	I-385 CROSS SECTIONS	105
I-385 NBCD X1 - I-385 NBCD X37	I-385 NBCD CROSS SECTIONS	39
I-385 SBCD X1 - I-385 SBCD X31	I-385 SBCD CROSS SECTIONS	31
RAMP 1 X1 - RAMP 1 X36	RAMP 1 CROSS SECTIONS	36
RAMP 1A X1 - RAMP 1A X34	RAMP 1A CROSS SECTIONS	34
RAMP 1B X1 - RAMP 1B X13	RAMP 1B CROSS SECTIONS	13
RAMP 2 X1 - RAMP 2 X10	RAMP 2 CROSS SECTIONS	10
RAMP 2A X1 - RAMP 2A X50	RAMP 2A CROSS SECTIONS	50
RAMP 2B X1 - RAMP 2B X25	RAMP 2B CROSS SECTIONS	25
RAMP 3 X1 - RAMP 3 X20	RAMP 3 CROSS SECTIONS	20
RAMP 3A X1 - RAMP 3A X17	RAMP 3A CROSS SECTIONS	17
RAMP 4 X1 - RAMP 4 X33	RAMP 4 CROSS SECTIONS	33
RAMP 4B X1 - RAMP 4B X28	RAMP 4B CROSS SECTIONS	28
RAMP 5 X1 - RAMP 5 X14	RAMP 5 CROSS SECTIONS	14
RAMP 7 X1 - RAMP 7 X5	RAMP 7 CROSS SECTIONS	5
RAMP 8 X1 - RAMP 8 X12	RAMP 8 CROSS SECTIONS	12
	RAMP 8 CROSS SECTIONS RAMP 8A CROSS SECTIONS	
RAMP 8A X1 - RAMP 8A X10 RAMP 9 X1 - RAMP 9 X4	RAMP 8A CROSS SECTIONS RAMP 9 CROSS SECTIONS	10
		6
RAMP 10 X1 - RAMP 10 X9	RAMP 10 CROSS SECTIONS	9
RAMP 11 X1 - RAMP 11 X12	RAMP 11 CROSS SECTIONS	12
DRAIN X1 - DRAIN X22	DRAINAGE CROSS SECTIONS	22
	TOTAL SHEETS	191/
	TOTAL SHEETS	1917

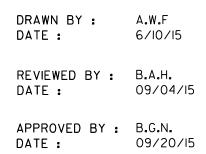
\triangle	ADDED CHEETCOO TA VCOA TO TA VCOE TA VA 45A TO TA VA 45D TA V4.5A
8	ADDED SHEETS 3G, TA-X63A TO TA-X63E, TA-X145A TO TA-X145D, TA-X151A TA-X157A, TA-X157B, TA-X182 TO TA-X210, I-385 X52A, I-385 X52B,
	I-385 NBCD X34A, I-385 NBCD X12A, RAMP'9 X0, RAMP'9 X5.
Λ	

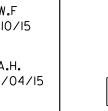
9 10/21/16 - ADDED SHEETS IL33, TA-24, TA-X211 TO TA-X220.

10/28/16 - ADDED SHEETS IL34, D33, TC4.2AA TO TC4.2AC, TC4.2BA TO TC4.2BC, TC4.2CA TO TC4.2CH, TC4.2Q, TA-2C, TA-25, TA-X221 TO TA-X235, S0-40 TO S0-43, S17-1, S18-1 TO S18-4, S55-1 TO S55-5, EC8 TO EC10.

1/12/17 - ADDED SHEET S32-7

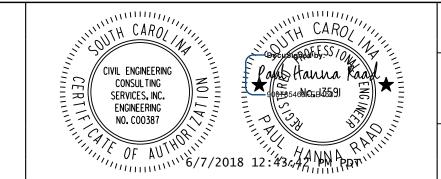

2/2/17 - ADDED SHEETS TA-26, TA-X236 TO TA-X241


3/16/17 - ADDED SHEET D32A

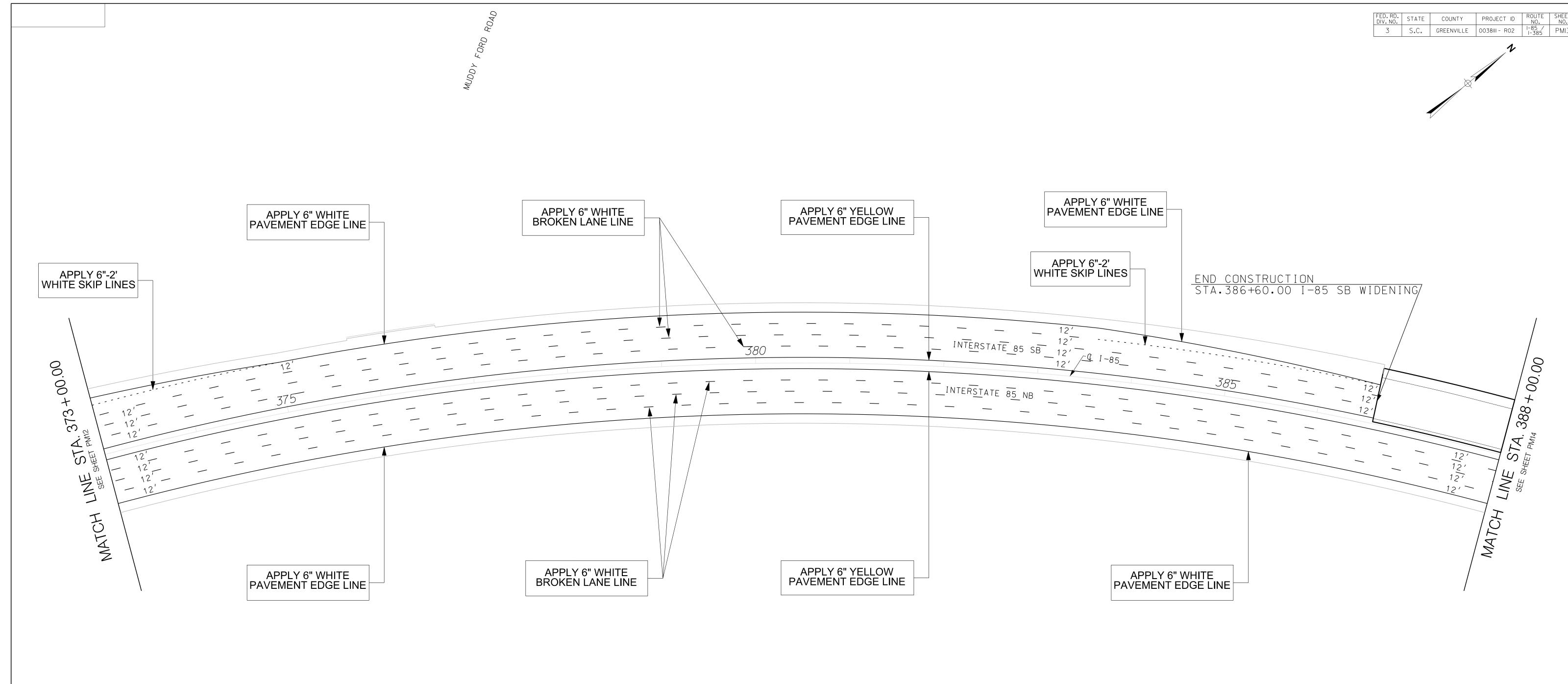

12/18/17 - ADDED SHEETS TC4.2A.1A AND TC4.2A.1B

1/9/18 - ADDED SHEET SC9

5/3/18 - REMOVED SHEETS S18-2, S18-3, S18-4, S55-1, S55-2, S55-3, S55-4, S55-5



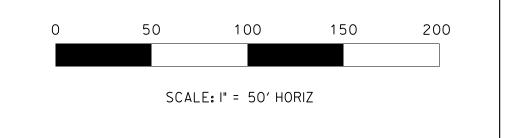
CIVIL ENGINEERING CONSULTING SERVICES, INC.

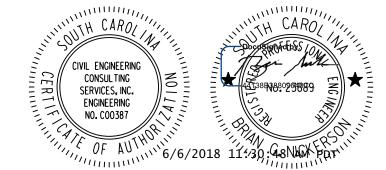


SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

SCE

I-85 / I-385 INTERCHANGE


INDEX OF SHEETS



REVISIONS NO. DATE REVISIONS DESCRIPTION CHECKED DESCRIPTION CHECKED DRAWN BY: A.W.F. DATE: 9/4/15 NO. DATE REMOVED 185 SB PAVEMENT MARKINGS STA. 386+60.00 TO STA. 388+00.00 05/02/18 B.G.N. REVIEWED BY: D.R.R. DATE: 9/4/15 APPROVED BY: B.G.N. DATE: 9/4/15

SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

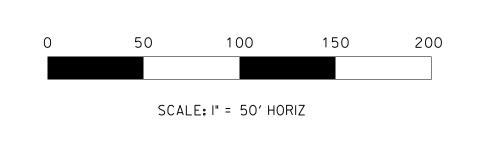
I-85 / I-385 INTERCHANGE

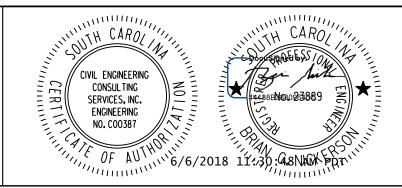
PAVEMENT MARKING PLAN SHEET

STA. 373+00.00 TO STA. 388+00.00

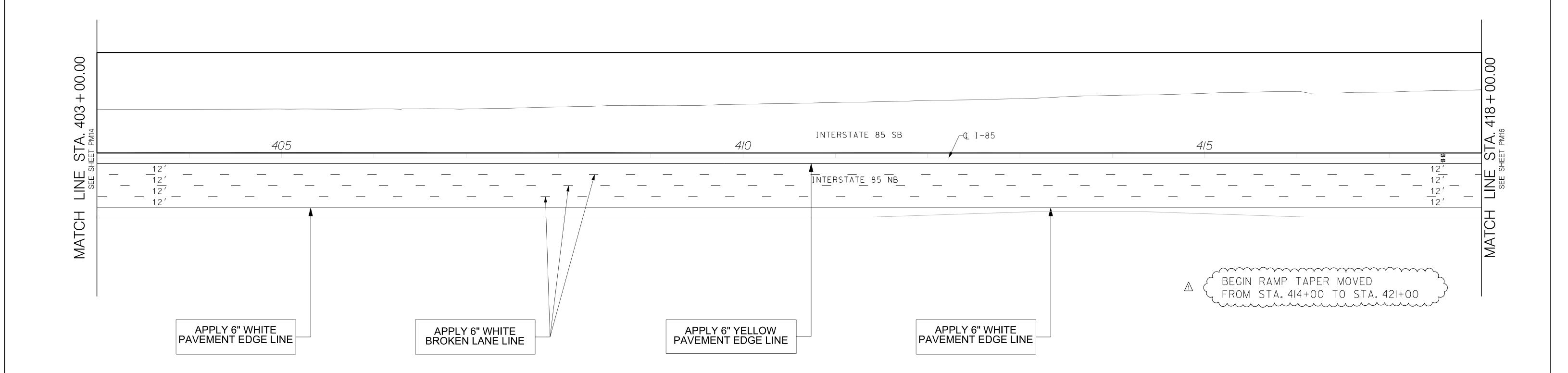
SCE

FED. RD. STATE COUNTY PROJECT ID ROUTE NO. NO.


3 S.C. GREENVILLE 0038III - R02 I-85 / I-385 PMI4 388 + 00.00 INTERSTATE 85 SB √Q I-85 __INTERSTATE 85_NB APPLY 6" WHITE PAVEMENT EDGE LINE APPLY 6" WHITE PAVEMENT EDGE LINE APPLY 6" YELLOW PAVEMENT EDGE LINE APPLY 6" WHITE BROKEN LANE LINE


REVISIONS		DESCRIPTION	DV	CHECKED	REVISIONS		DESCRIPTION	BY	CHECKED		
NO.	DATE	DESCRIPTION	BY	CHECKED	NO.	DATE	DESCRIFTION	<u>. </u>	CHECKED	DRAWN BY :	A.W.F. 9/4/15
\triangle	05/02/18	REMOVED 185 SB PAVEMENT MARKINGS STA. 388+00.00 TO STA. 403+00.00	R.L.D.	B.G.N.						DATE :	9/4/15
										REVIEWED BY : DATE :	D.R.R. 9/4/I5
										APPROVED BY :	B.G.N. 9/4/15
										DATE :	9/4/15

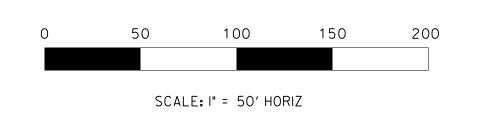
SOUTH	CAROLINA	DEPARTMENT
OF TRA	ANSPORTAT	ION

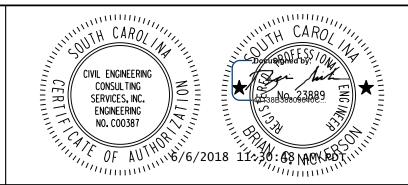

I-85 / I-385 INTERCHANGE

SCE

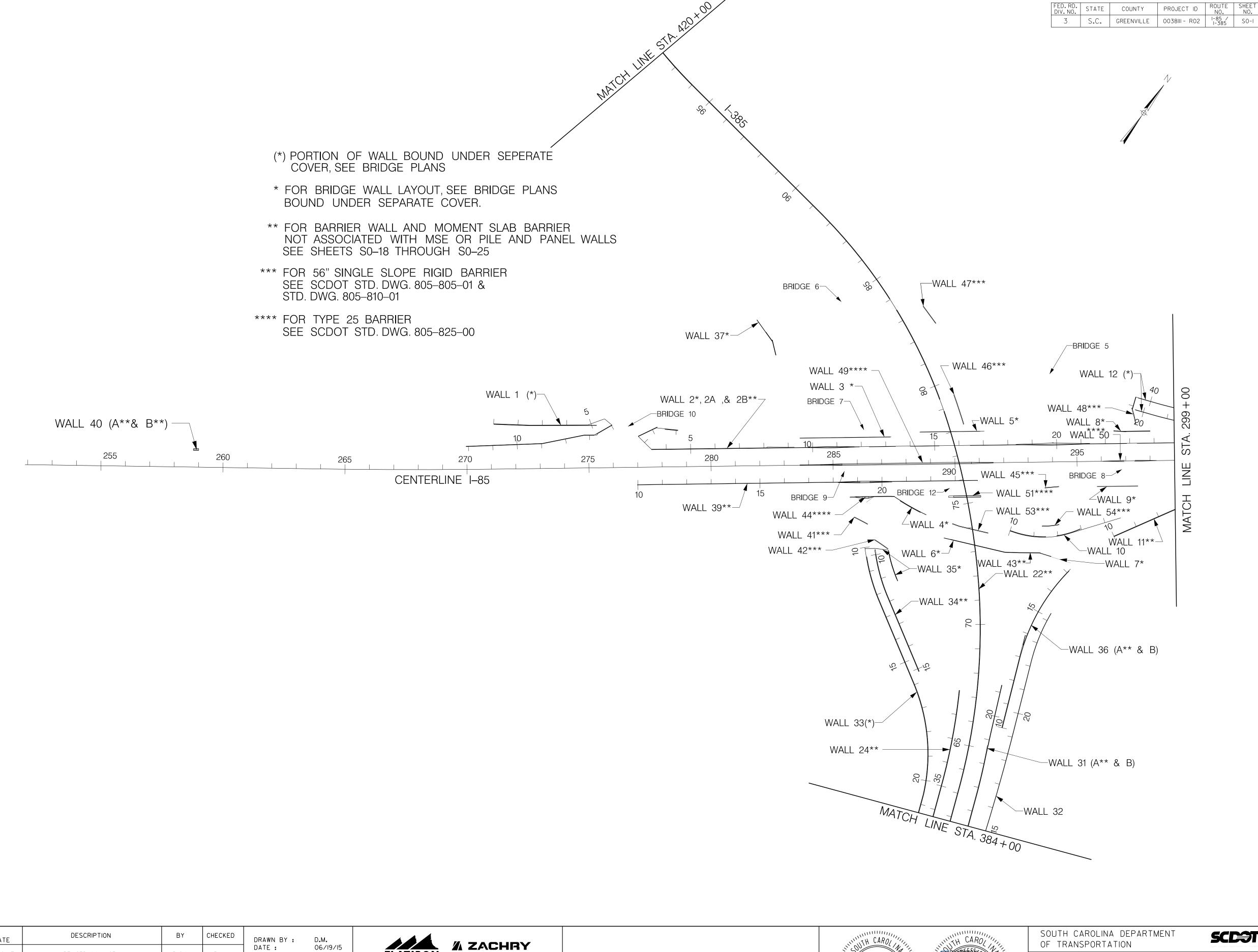
PAVEMENT MARKING PLAN SHEET STA. 388+00.00 TO STA. 403+00.00

FED. RD. STATE COUNTY PROJECT ID ROUTE NO. NO.


3 S.C. GREENVILLE 0038III - R02 I-85 / PMI5



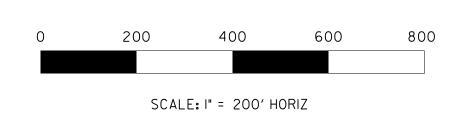
REVISIONS NO. DATE REVISIONS DESCRIPTION CHECKED DESCRIPTION CHECKED DRAWN BY: A.W.F. DATE: 9/4/15 NO. DATE ADJUSTED PAVEMENT MARKINGS FOR PELHAM ROAD EXIT R.L.D. 05/16/16 B.G.N. REVIEWED BY: D.R.R. DATE: 9/4/15 REMOVED 185 SB PAVEMENT MARKINGS STA. 403+00.00 TO STA. 414+30.20 B.G.N. 05/02/18 APPROVED BY: B.G.N. DATE: 9/4/15

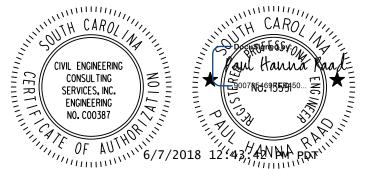


SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

SCE

I-85 / I-385 INTERCHANGE

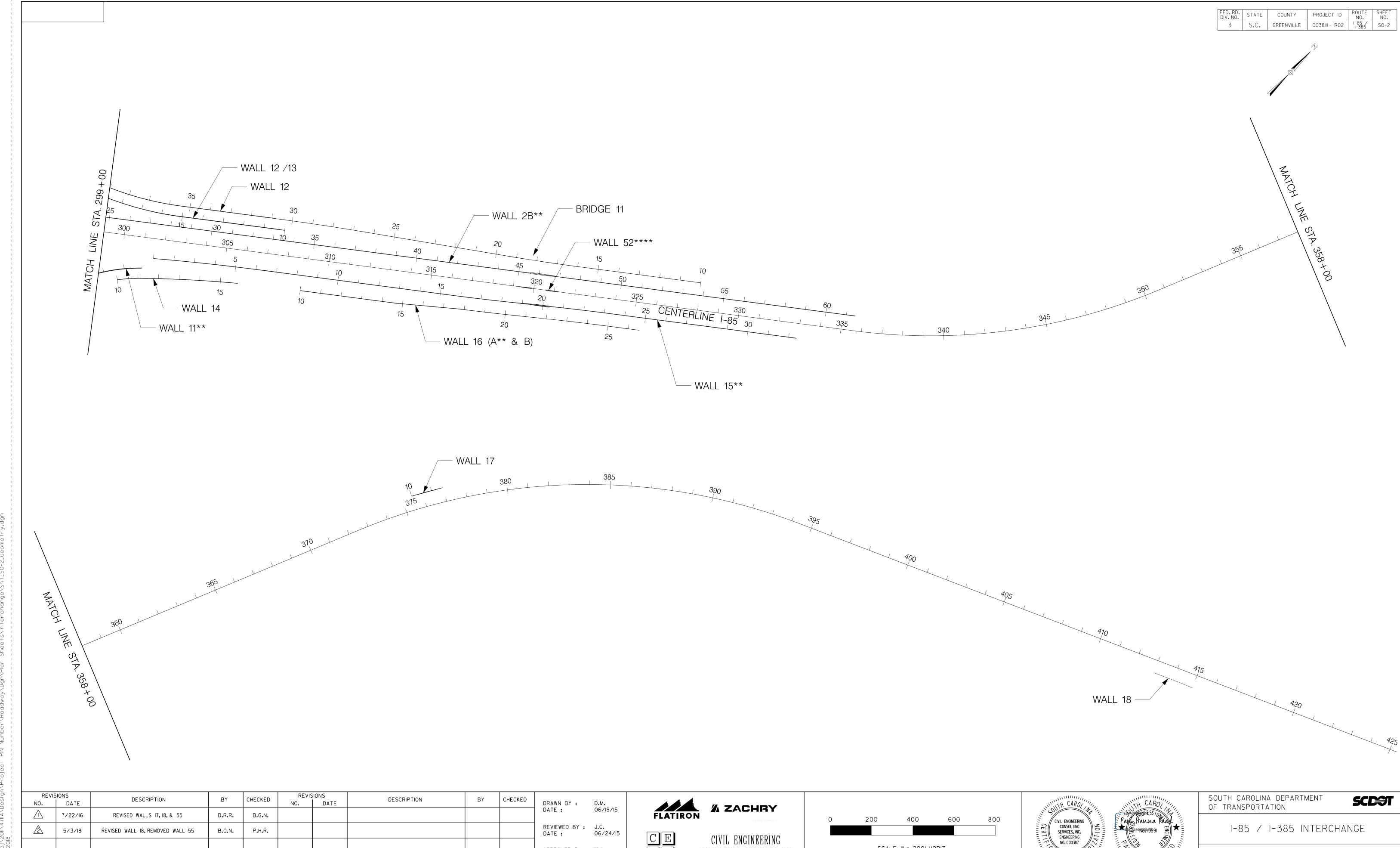

PAVEMENT MARKING PLAN SHEET STA. 403+00.00 TO STA. 418+00.00



NO. DATE NO. DATE DATE : D.R.R. <u>/5\</u> REVISED WALL 27 TYPE AND BEGIN STA. B.G.N. 10/20/17 B.G.N. REVISED WALL 23 R.L.K. REVIEWED BY : J.C. 2 D.R.R. REVISED WALLS 17, 18,38, & 55 B.G.N. 5/3/18 REVISED WALL 18, REMOVED WALL 55 P.H.R. DATE : <u>/3\</u> B.G.N. R.L.K. 11/1/16 REVISED WALL 16B APPROVED BY: M.A._ DATE: 06/26/15 4 B.G.N. 1/19/17 R.L.K. REVISED WALL 10

FLATIRON 06/19/15 06/24/15

CIVIL ENGINEERING CONSULTING SERVICES, INC.



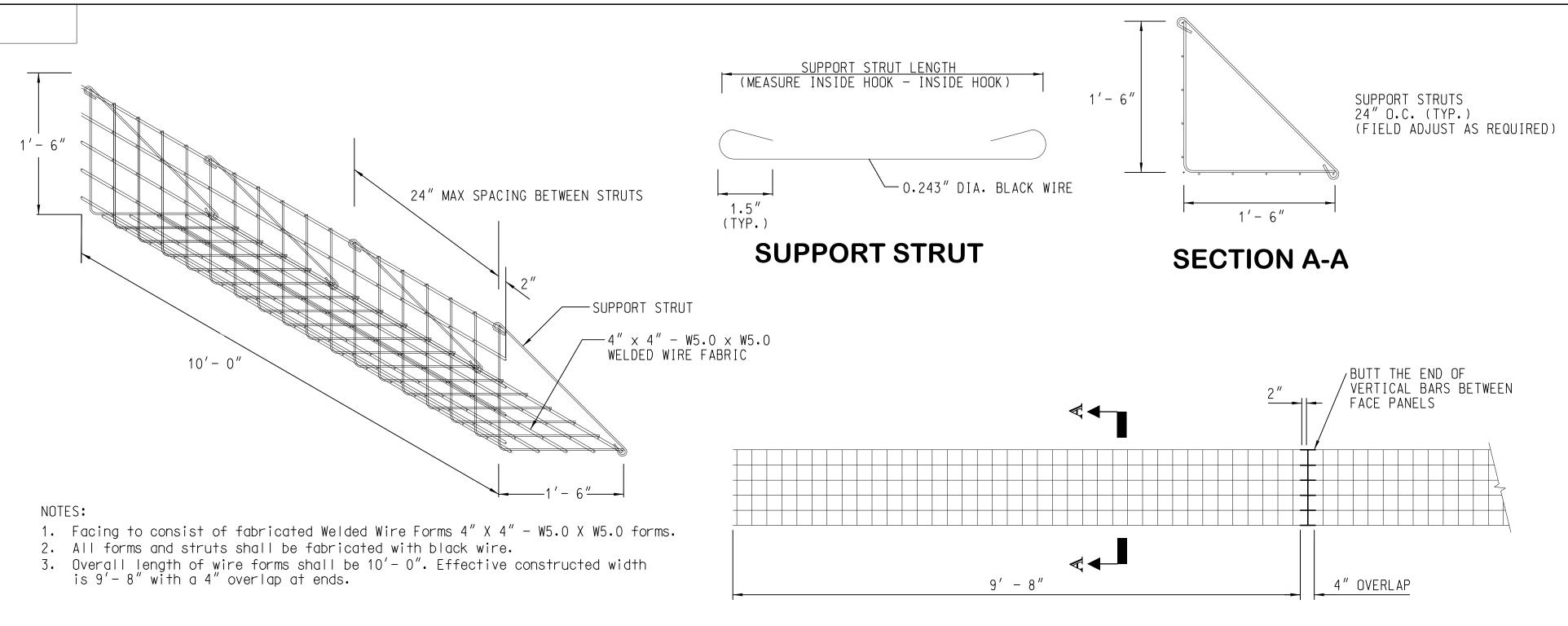
OF TRANSPORTATION

I-85 / I-385 INTERCHANGE

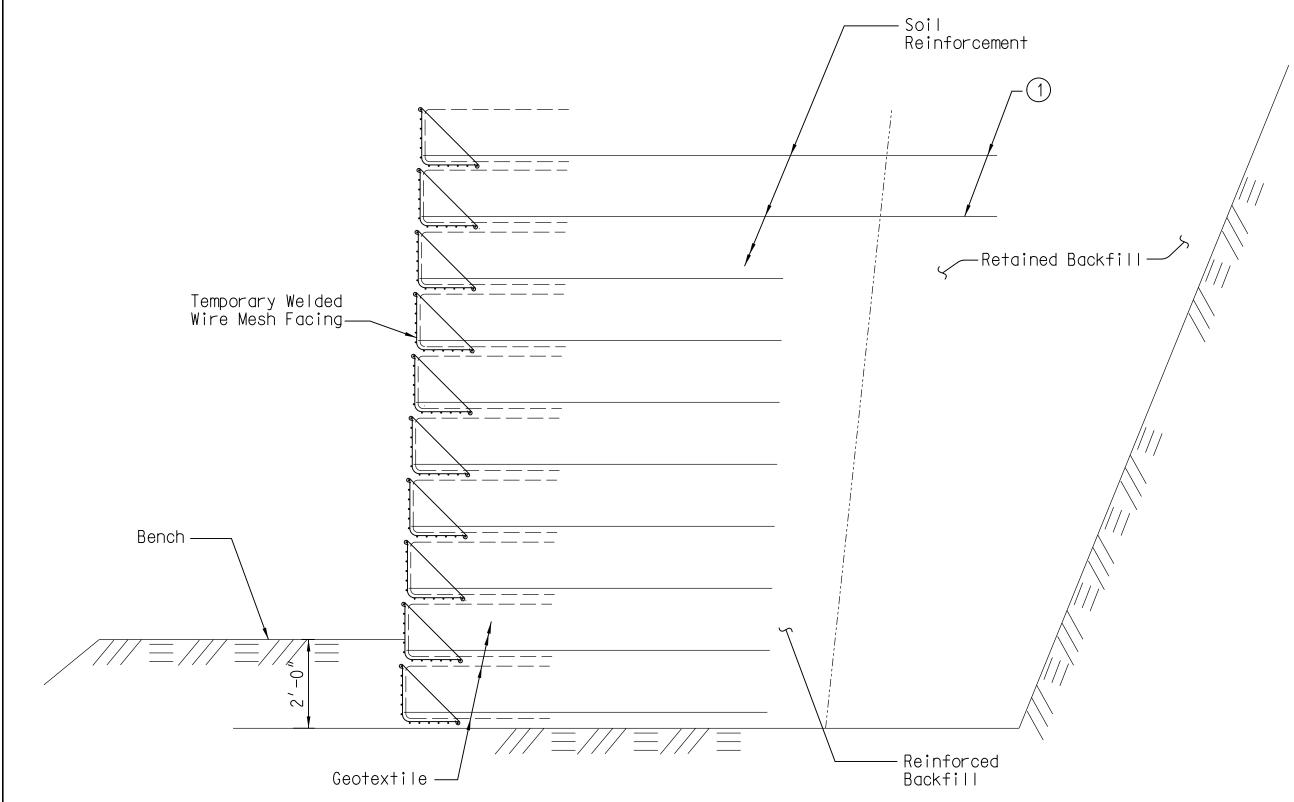
WALL LAYOUT SHEET

CIVIL ENGINEERING

CONSULTING SERVICES, INC.


APPROVED BY: M.A._ DATE: 06/26/15

SCALE: I" = 200' HORIZ

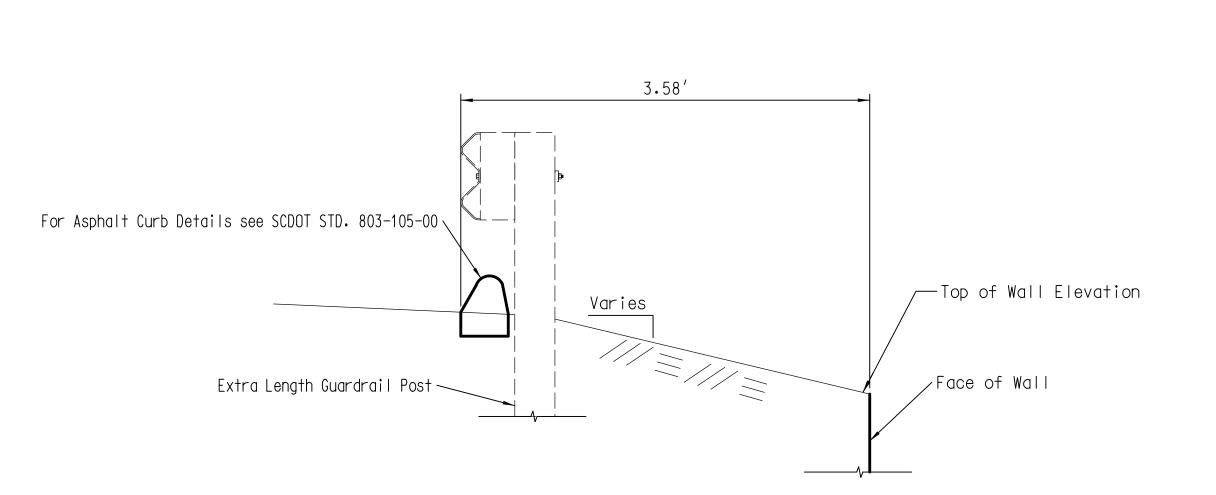

WALL LAYOUT SHEET

FED. RD. STATE COUNTY PROJECT ID ROUTE NO. NO.

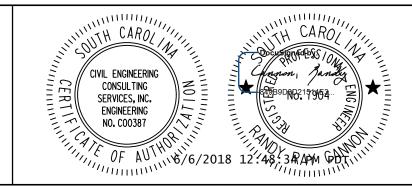
3 S.C. GREENVILLE 0038III - R02 I-85 / S0-40

WELDED WIRE FORM FACING UNIT

TEMPORARY MSE WALL TYPICAL SECTION


Extend top two layers of soil reinforcement 5 feet beyond the end of the lower layers of soil reinforcement.

REVIS	SIONS	DESCRIPTION	BY	CHECKED	REVIS	IONS	DESCRIPTION	DV	CHECKED		
NO.	DATE			CHECKED	NO.	DATE	DESCRIPTION	BY	CHECKED	DRAWN BY :	D.P.M.
\triangle	5/3/18	REVISED WALL FACE/GUARDRAIL DETAIL REMOVED MOMENT SLAB DETAIL REMOVED MSE WALL INTERACTION DETAIL	D.P.M.	M.S.A.						DATE :	07/26/16
										REVIEWED BY : DATE :	M.S.A. 07/26/16
										APPROVED BY :	R.R.C
										DATE :	07/26/16



WALL FACE AND GUARDRAIL DETAIL

Notes:

Extra Length Guardrail post to be used. Contractor shall take the necessary measures needed to avoid conflict between guardrail post and wire wall soil reinforcements.

l	SOUTH CAROLINA DEPARTMENT
l	OF TRANSPORTATION

I-85 / I-385 INTERCHANGE

SCE

WALL DETAILS

FED. RD. STATE COUNTY PROJECT ID ROUTE NO. NO. 3 S.C. GREENVILLE 0038III - R02 I-85 / I-385 SO-43

The following notes apply to borrow materials:

Provide borrow materials meeting the following minimum requirements:

- A sandy material (35% or less passing 0.075 mm) with a minimum total soil unit weight, γ_m of 110 pcf, with a maximum dry density exceeding 100 pcf.
- Minimum friction angle, φ, of 30° and cohesion, c, of 50 psf for embankment fill, alternatively embankment fill may consist of a minimum friction angle (φ) of 34° with zero cohesion.
- No. 57 Stone backfill for Mechanically Stabilized Earth Walls

In addition, determine the moisture-density relationship and classification of the material. Test and submit the classification, moisture-density relationship, and soil strength parameters of the material to the Engineer for acceptance. An AASHTO certified laboratory is required to perform the testing. Contact the RPG Geotechnical Engineer for a list of locally available AASHTO certified laboratories. The Department may perform independent testing to assure quality.

Determine the friction angle and cohesion using either direct shear testing or consolidated-undrained triaxial shear testing with pore pressure measurements. Direct Shear testing shall only be performed on soils with a fines content of less than 25 percent. Classification testing includes grain-size distribution with wash #200 sieve, moisture plasticity testing and natural moisture content. Use the Standard Proctor test to determine the moisture-density relationship. Remold all samples used in shear strength testing to 95 percent of the Standard Proctor density. Conduct shear strength testing at the initial selection of the borrow pit, any subsequent changes in borrow pits, and for every 10,000 cy of materials placed. Perform classification testing for every 50,000 cy of materials placed, including the material used for the shear strength testing. Additional shear testing may be required if, in the opinion of the RCE, the materials being placed are different from those originally tested.

If these minimum criteria cannot be met, provide the soil parameters for the intended borrow excavation material for the project site to the Engineer for review and acceptance. After acceptable borrow material is obtained, compact the fill to the required finish grade line using the compactive effort indicated in the Standard Specifications for Highway Construction, Section 205 (Embankment Construction).

The following notes apply to muck excavation:

Any areas identified on the plans and any additional areas that are discovered to deflect or settle may require corrective action as directed by the RCE. This may include undercutting; placing No. 57 stone aggregate that is separated from other borrow materials by a geotextile for separation of sub-grade and sub-base, and/or additional compactive effort to the approval of the RCE.

In areas that require mucking or undercutting, borrow material soil may be placed as a bridge lift as long as the grade on which the material is being placed is at least 2 feet above ground water level. In the event that groundwater does not allow backfilling with a borrow material soil, use a No. 57 stone as the bridge lift material. Borrow material bridge lifts may not exceed a 2-foot thickness. The depth at which mucking or undercutting is required is dependent upon encountering a suitable bearing material within the excavation or if a predetermined elevation or depth is required. In most cases, do not undercut more than 3 to 5 feet. The RCE will determine the final mucking or undercutting thickness, unless otherwise specified in the project plans and/or specifications. If a suitable bearing soil is not encountered within this depth range, place a P1 biaxial geogrid with an aperture size of less than or equal to 1 inch and in accordance with the project special provisions beneath a 2-foot thick bridge lift of No. 57 stone. If additional compacted borrow material soil is needed to reach grade, place a geotextile for separation of sub-grade and sub-base between the No. 57 stone and the overlying compacted soil. A bridge lift consisting of borrow material soil may not be placed within 3 feet of the base of the pavement section. Place only compacted borrow material soil or No. 57 stone within this zone. Reference the Standard Specifications for Highway Construction, Earthwork Section, Division 200.

Additional Notes:

See S0-16 and S0-17 for additional MSE Wall Design Parameters.

The following notes apply for MSE Wall Subgrades:

Prior to construction of the leveling pad and MSE fill, the RCE shall verify that the retaining wall is founded on subgrade materials possessing the minimum allowable bearing capacity noted on wall plan and elevation sheets. If the RCE determines that the subgrade is unacceptable for placement of MSE fill, the contractor shall undercut the subgrade to the limits directed by the RCE. Unacceptable subgrade materials include, but are not limited to, all high plasticity clays and elastic silts (CH, MH), low plasticity clays and silts (CL, ML) with an unconfined compressive strength less than 2,000 psf, and deleterious debris. Replacement of undercut material will be with Backfill Material, meeting requirements outlined in the SCDOT Standard Specifications for Highway Construction.

The foundation area for the MSE walls might have scattered pockets of soft soils that might be present at the surface or just below the surface for the base of the MSE fill. These soft pockets are only expected to extend a few feet below the base of the MSE fill. The quality assurance representative shall proofroll the subgrade in this area and/or conduct dynamic cone tests at regular intervals to determine that the subgrade meets the requirements of the paragraph above. There are several locations along the roadway alignment where proposed drainage structures are situated in front of (i.e. parallel) MSE walls, or where new and existing draining structures pass beneath the MSE walls. Where new pipes are parallel to the proposed wall, the pipe should be installed prior to the proposed wall or the wall design should account for the temporary reduction in passive resistance. Where pipes pass beneath walls, the pipes should be designed to account for the increased loading associated with the wall backfill. We recommend the top of each pipe be situated a minimum of 1 foot below the bottom of retaining.

The following notes apply for settlement and displacement monitoring:

The contractor shall establish a monitoring program consisting of settlement instruments. The settlement monitoring program must include establishing settlement monitoring instruments on the subgrade soils prior to fill placement, and at design pavement subgrade elevation. Settlement monitoring instruments are required at a spacing of every 100 feet along MSE Walls and every 500 feet along embankments with new fill thicknesses exceeding 20 feet. Instruments shall be established at the centerline of road and edge of pavement. Settlement monitoring shall continue until three consecutive measurements demonstrate the rate of settlement is less than 0.1 inches per year. No more than one measurement shall be obtained on a single day.

A minimum of 2 measurements shall be obtained on monuments prior to fill placement, and instruments shall be measured weekly during fill placement. Instrumentation measurements shall be provided to the Geotechnical Engineer within 24 hours of measurements for interpretation. Interpreted results shall be provided to the RCE.

The following notes apply to slope construction:

Where the new fill meets the existing slope, the existing slope shall be benched to limit the potential for a preferential failure surface and to allow compaction at the interface. Benches shall have a minimum horizontal length of 8 feet and a vertical rise of no more than 3 feet. Fill slopes of 2H:1V or steeper shall be overbuilt (i.e. fill should temporarily extend beyond the final slope face) to allow compaction at the slope face. After compaction is complete, the slope may be regraded to the final inclination.

Should seeps or thick lenses of highly plastic soils be observed in the planned fill and cut slopes that are steeper than 2H:1V, ECS must be contacted to determine if the steeper slopes may be constructed as planned or if slope flattening or reinforcing is required. Similarly, if soft or wet ground conditions are observed at the base of planned fill embankments, the QA representative must determine the limits of undercutting required or required in-situ treatment.

The following Plan Notes apply to Mechanically Stabilized Earth walls:

Reinforced Backfill (Granular Fill or stone.)

Internal Friction Angle (deg) = 36
Total Unit Weight = 120 pcf
Surcharge Dead Load for Pavement Overlay = 140 psf
Active Earth Pressure Coefficient = 0.26

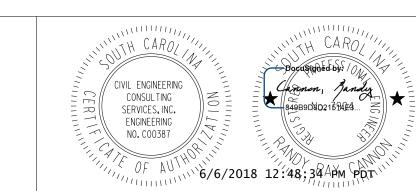
Retained Backfill

Internal Friction Angle (deg) = 30 Total Unit Weight = 117 pcf Active Earth Pressure Coefficient = 0.33

Wall 17 I-85 Station
Foundation Soils
Total Internal Friction Angle (deg) = 26
Total Cohesion = 0 psf
Effective Internal Friction Angle (deg) = 26
Effective Cohesion = 0 psf

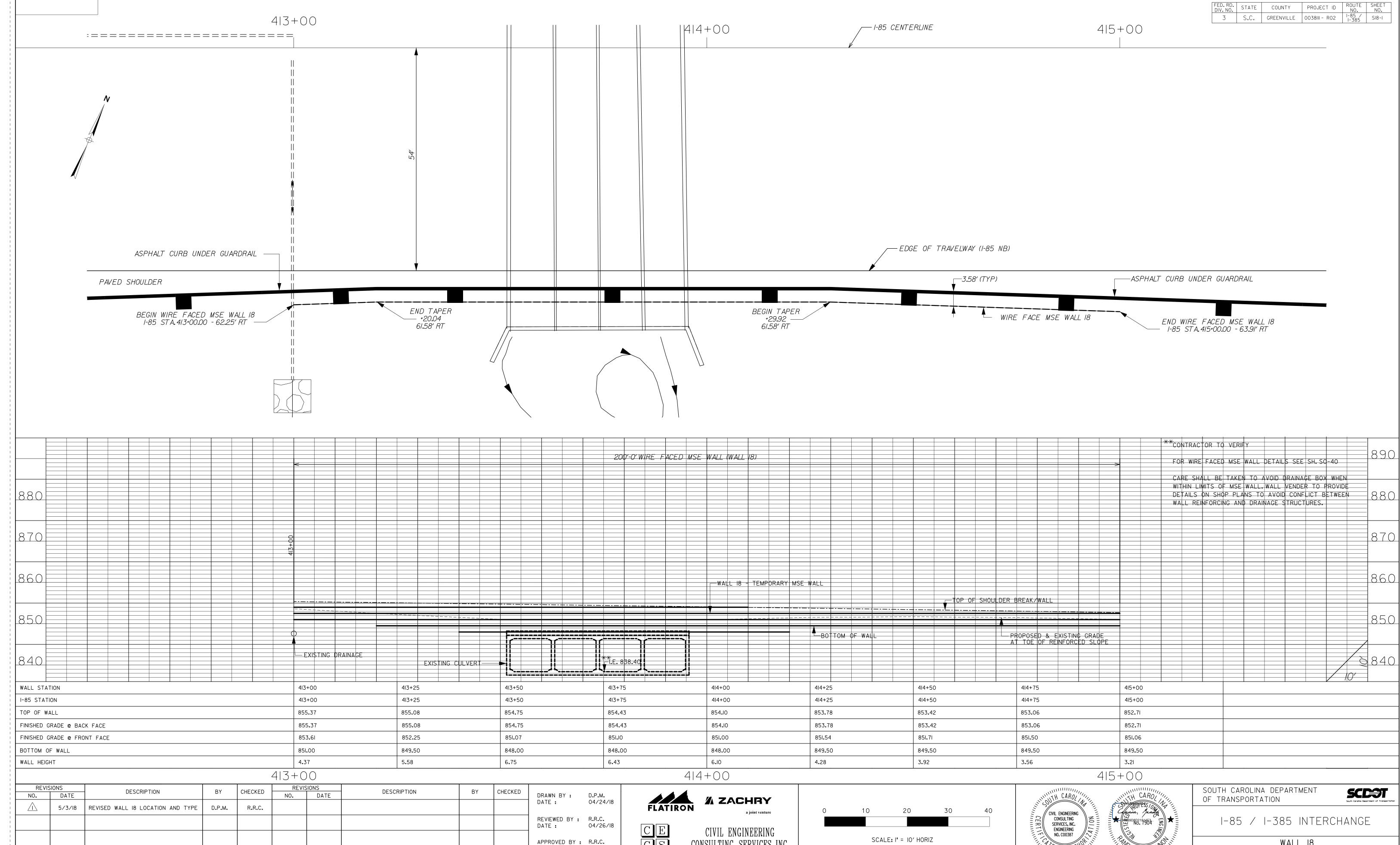
Wall Height Min. Breq Factored Bearing (Static) Factored Bearing (Seismic) 0 < H ≤ 7.5 14.5 ft 2.000 3.100

Wall 18 I-85 Station 413+00 to 415+00
Foundation Soils
Total Internal Friction Angle (deg) = 0
Total Cohesion = 1000 psf
Effective Internal Friction Angle (deg) = 26
Effective Cohesion = 100 psf


Wall Height Min. Breq Factored Bearing (Static) Factored Bearing (Seismic)

 $3 < H \le 7$ 12.5 ft 5,400 8,400

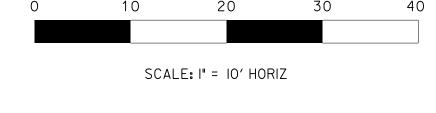
CONSULTING SERVICES, INC.


SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

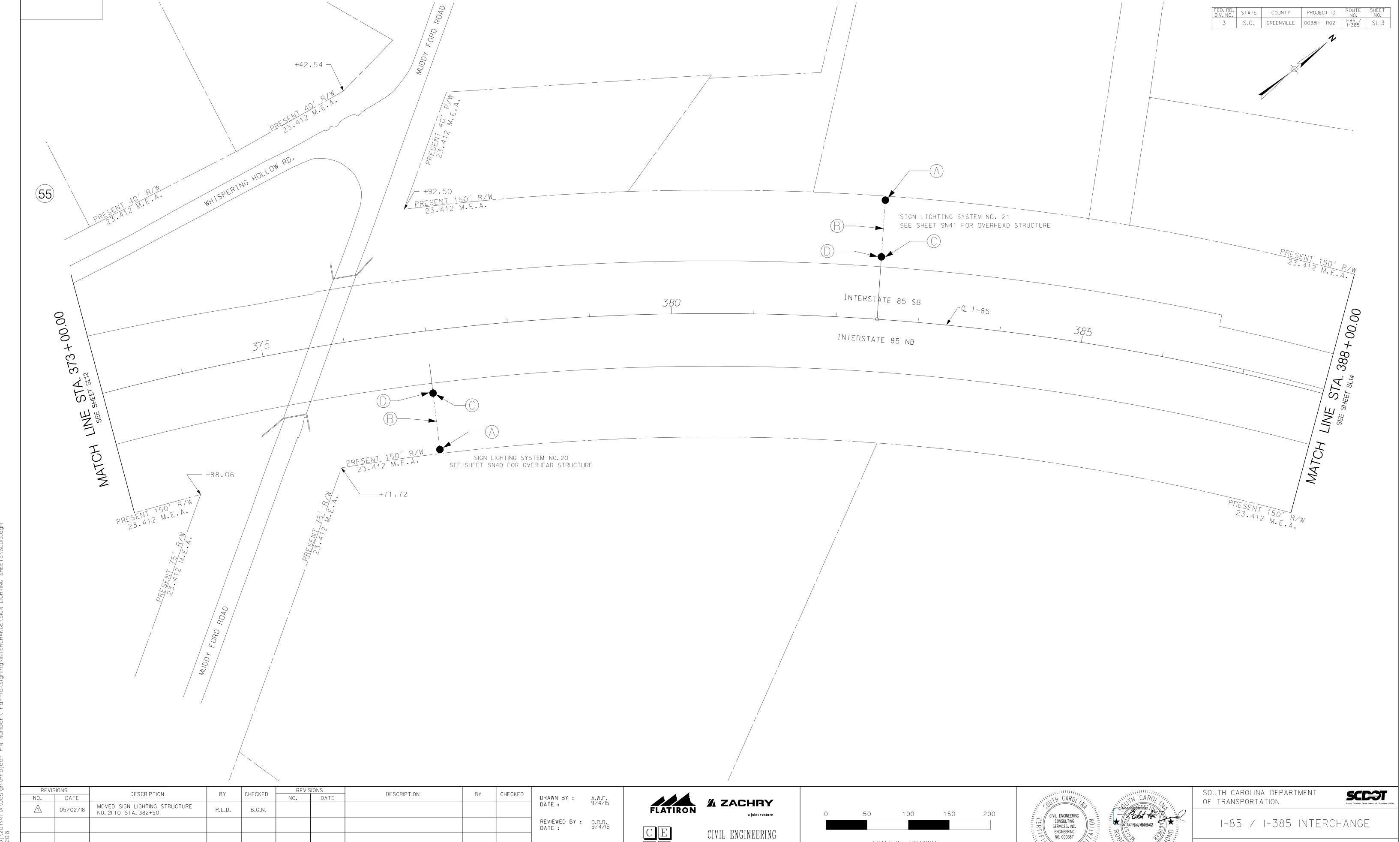
South Caralina Department of Tr

SCE

I-85 / I-385 INTERCHANGE


GEOTECH & MSE WALL NOTES
FOR ROCKY CREEK

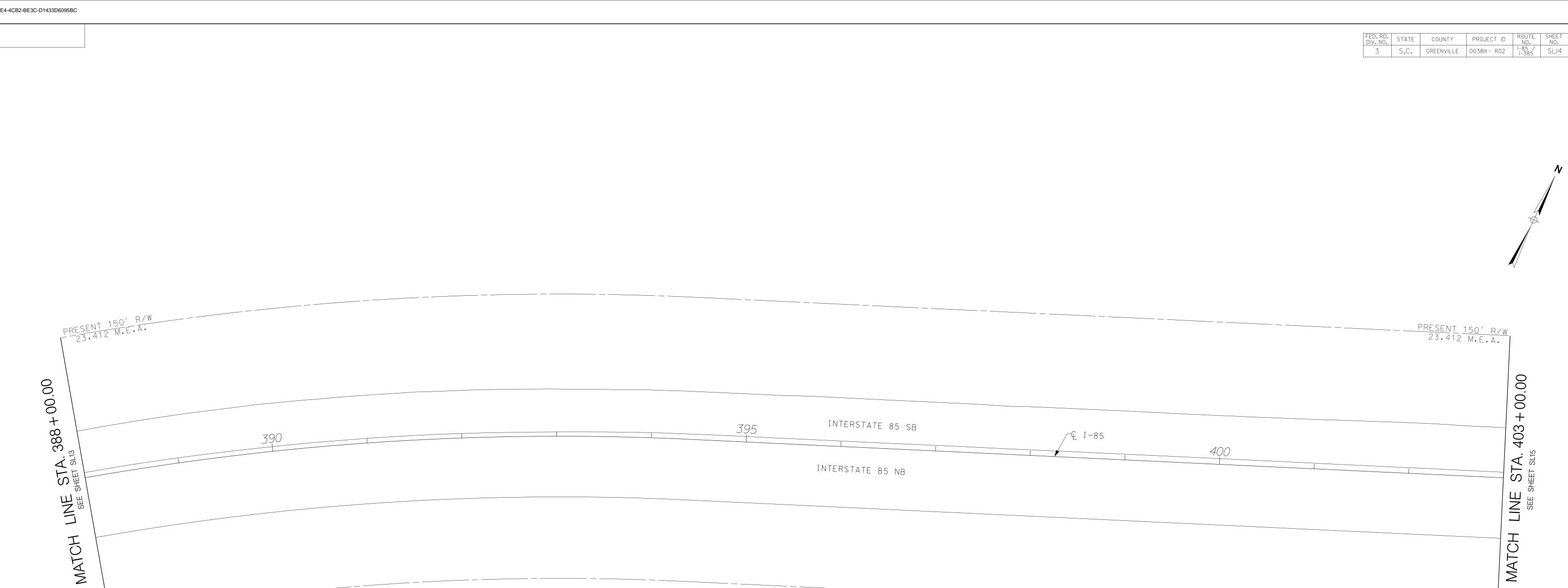
04/26/18


DATE :

CONSULTING SERVICES, INC.

WALL 18 PLAN & PROFILE

CONSULTING SERVICES, INC.

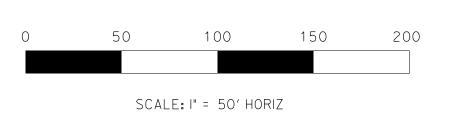

APPROVED BY: B.G.N. DATE: 9/4/15

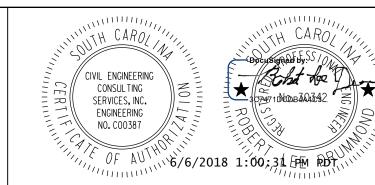
SCALE: I" = 50' HORIZ

OF AUTHOR 1:00;31 PM PDT

SIGN LIGHTING PLAN SHEET STA. 373+00.00 TO STA. 388+00.00

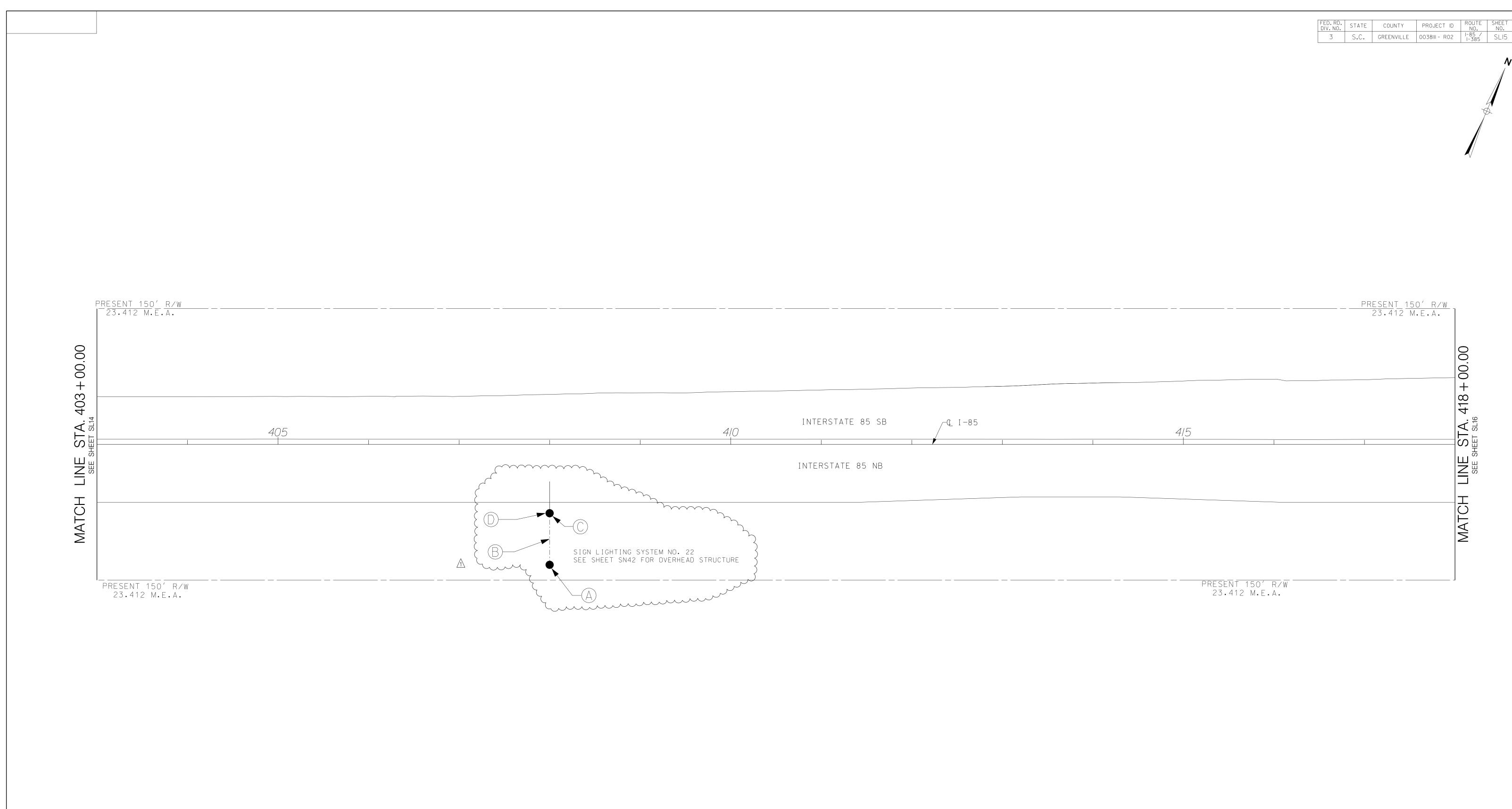
S:\Proj\20||\47||A\Design\Project PIN Number\Traffic\Signing\!NTERCHANGE\SIGN LIGHTING SHEET!


REVISIONS NO. DATE CHECKED DESCRIPTION CHECKED DESCRIPTION DATE DRAWN BY: A.W.F. DATE: 9/4/15 R.L.D. REVISED SOUTHBOUND EDGE LINE B.G.N. REVIEWED BY: D.R.R. DATE: 9/4/15 APPROVED BY: B.G.N. DATE: 9/4/15



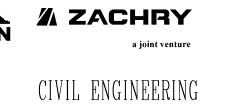
CIVIL ENGINEERING

CONSULTING SERVICES, INC.

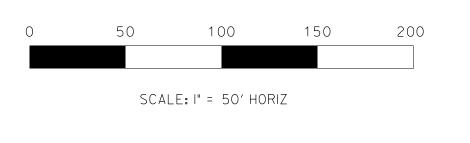


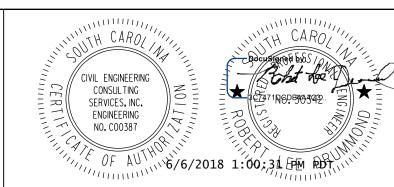
SOUTH	CAROLINA	DEPARTMENT
OF TR	ANSPORTAT	ION

I-85 / I-385 INTERCHANGE


SCENT

SIGN LIGHTING PLAN SHEET STA. 388+00.00 TO STA. 403+00.00




REVISIONS		DECODIDATION	DV	CHECKED	REVISIONS		DECEDIATION	DV	TCHECKED		
NO.	DATE	DESCRIPTION	BY	CHECKED	NO.	DATE	DESCRIPTION	BY	CHECKED	DRAWN BY :	A.W.F. 9/4/I5
\triangle	04/07/16	MOVED SIGN LIGHTING STRUCTURE TO STA.408+00	R.L.D.	B.G.N.						DATE:	9/4/15
<u> </u>	05/02/18	MOVED SIGN LIGHTING STRUCTURE NO.21TO STA.382+50	R.L.D.	B.G.N.						REVIEWED BY : DATE :	D.R.R. 9/4/i5
										APPROVED BY : DATE :	B.G.N. 9/4/I5

CONSULTING SERVICES, INC.

SOUTH CAROLINA	DEPARTMENT
OF TRANSPORTAT	ION

I-85 / I-385 INTERCHANGE

SIGN LIGHTING PLAN SHEET STA.403+00.00 TO STA.418+00.00

SCE

 OA L		
	BLW	
	CEO BL	
	TH OF INTERCHANGE 85SB END WIDENING STA. REVISED TO 386+60	
	DENING STA. R	
2C	5SB END WIDE	
TED TO ADD STEP 2A - 2C	NGE 85S	

FED. RD. DIV. NO.	STATE	COUNTY	PROJECT ID	ROUTE NO.	SHEET NO.
3	S.C.	GREENVILLE	0038111 - R02	I-85 I-385	TC3

SERIES 4 SHEETS

EP 1: SHEETS TC4.1 – 4.1A

 PREPARE EX 85NB/SB OUTSIDE SHOULDERS FOR STEP 2 I-85 MEDIAN BENT WORK (85NB STA. 279+00 TO 293+40 & 85SB STA. 280+00 TO 303+50).

SHEETS TC4.2 – 4.2P

<u>I-85 WIDENING SOUTH OF INTERCHANGE</u> (TC4.2 – 4.2D)

• SHIFT 85NB/SB TRAFFIC TO THE INSIDE, AND COMPLETE OUTSIDE WIDENING (85NB STA. 203+00 TO 249+13 & 85SB STA. 211+80 TO 268+00).

CONCURRENT CONSTRUCTION:

- **R5 STEP 1** (TC14.1)
- **R5 STEP 2** (TC14.2)

<u>I-85 MEDIAN BENTS</u> (TC4.2E – 4.2G)

• SHIFT 85NB/SB TRAFFIC TO OUTSIDE SHOULDERS. WITH 85 TRAFFIC ON OUTSIDE SHOULDERS, COMPLETE MEDIAN BRIDGE BENTS (BR5 BENT 7, BR7 BENT 2, BR8 BENT 2, BR9 BENT 3, BR12 BENT 4).

<u>I-85 WIDENING NORTH OF INTERCHANGE</u> (TC4.2G – 4.2Q)

• SHIFT 85NB/SB TRAFFIC TO THE INSIDE, AND COMPLETE OUTSIDE WIDENING OF 85 TOWARDS PELHAM RD (85NB STA. 304+00 TO 428+25 & 85SB STA. 302+50 TO 386+60).

CONCURRENT CONSTRUCTION:

- R1
- R1A
- CHROME DR.
- CONSTRUCT WALLS ALONG 85 NEAR ROCKY CREEK.
- SHIFT PELHAM EXIT RAMP TRAFFIC TO THE INSIDE AND COMPLETE TEMP. PELHAM AND OUTSIDE WIDENING (PELHAM STA. 54+79 TO 61+25).

P 2A: SHEETS TC4.2AA – 4.2AC

 COMPLETE 85NB OUTSIDE WIDENING (85NB STA. 415+50 TO 428+20). SHIFT PELHAM EXIT RAMP TRAFFIC TO THE OUTSIDE (TEMP. PELHAM) AND COMPLETE 85NB/PELHAM GORE AREA, TEMP PVMT, AND PELHAM LEFT SIDE.

STEP 2B: SHEETS TC4.2BA – 4.2BC

• SHIFT PELHAM EXIT RAMP TRAFFIC TO THE INSIDE/TEMP PVMT AND COMPLETE PELHAM RIGHT SIDE (PELHAM STA. 50+00 TO 54+79).

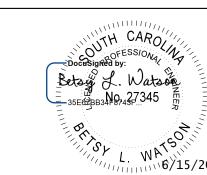
*UPON SWITCHING TRAFFIC TO THE LEFT SIDE OF PELHAM RAMP, WORK IN A CONTINUOUS AND EXPEDITIOUS MANNER TO BREAK UP AND REMOVE EXISTING RAMP PAVEMENT ON THE RIGHT SIDE SUCH THAT WATER ENTRAPMENT DOES NOT OCCUR.

STEP 2C: SHEETS TC4.2CA – 4.2CH

- SHIFT 85NB/SB TRAFFIC TO THE OUTSIDE, AND COMPLETE MEDIAN FOUNDATIONS FOR OVERHEAD SIGN STRUCTURES AND MEDIAN DRAINAGE WORK (85 STA. 350+60 TO 428+50).
- REMOVE TEMP PVMT ALONG LEFT SIDE PELHAM (PELHAM STA. 53+88 TO 57+00).

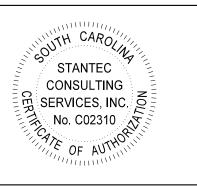
STEP 3: SHEETS TC4.3 – 4.3B

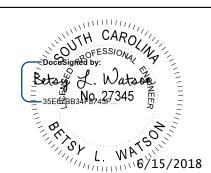
- UPON COMPLETION OF MEDIAN BENT WORK, REMOVE TEMP BARRIER, REVISE PVMT MARKINGS, AND SHIFT 85NB/SB OFF OF OUTSIDE SHOULDERS.
- REVISE 85NBCD MARKINGS AT ENTRANCE RAMP TO 85NB AND COMPLETE 85/85NBCD OUTSIDE WIDENING (STA. 295+00 TO 301+50).


PREREQUISITE CONSTRUCTION:

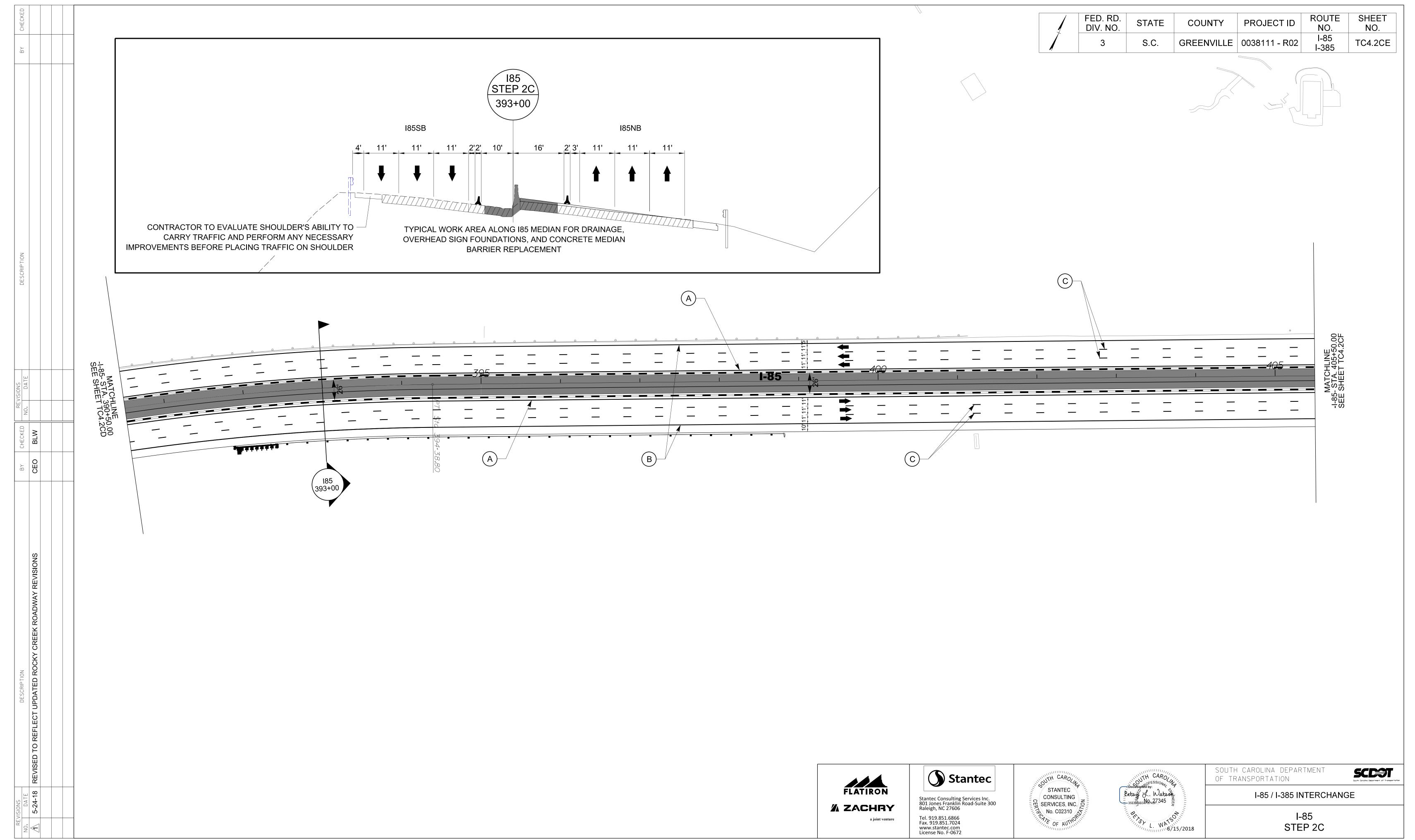
- **85NBCD STEP 3** (TC5.3)
- R2A/R4 STEP 3 (TC9.3)

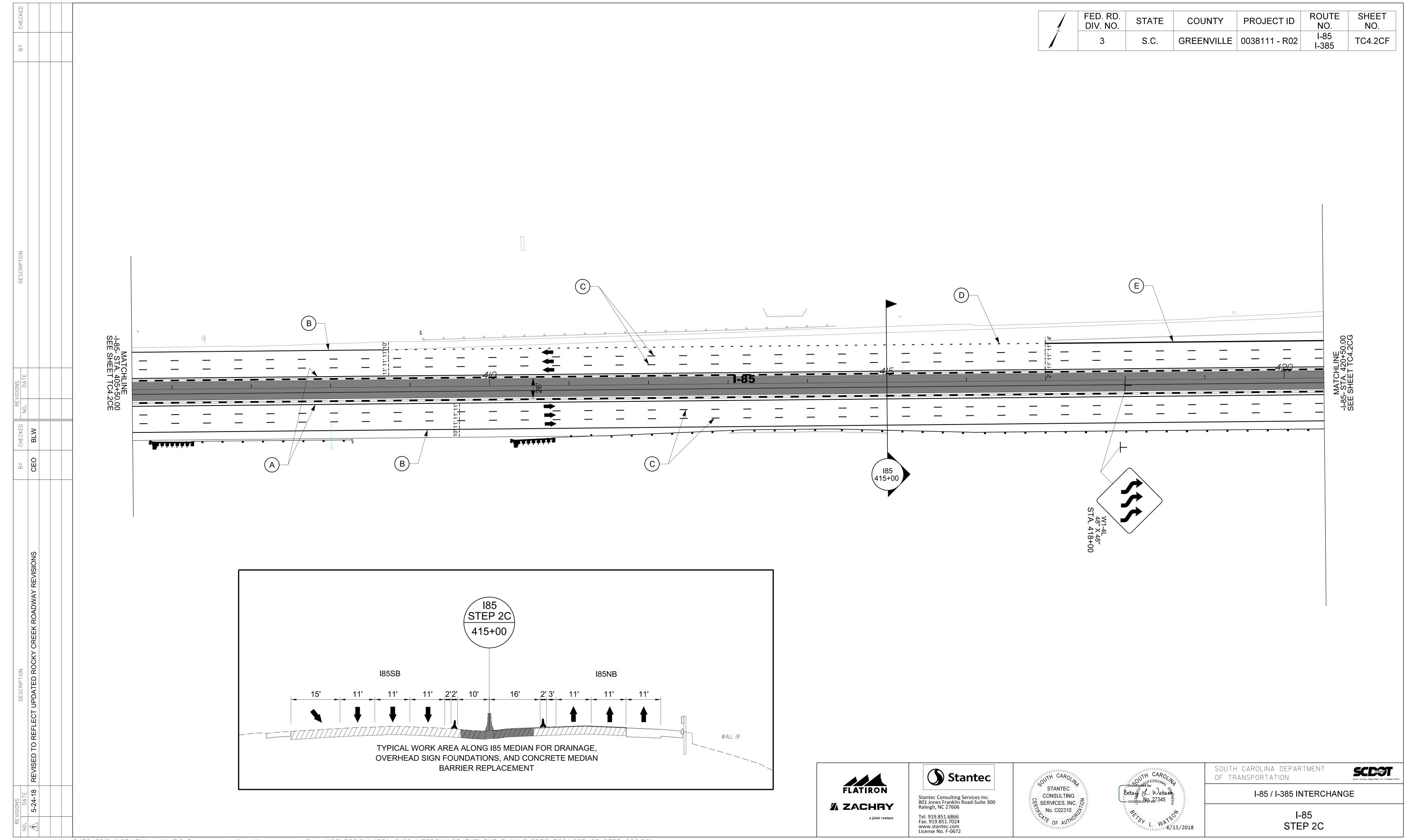
SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

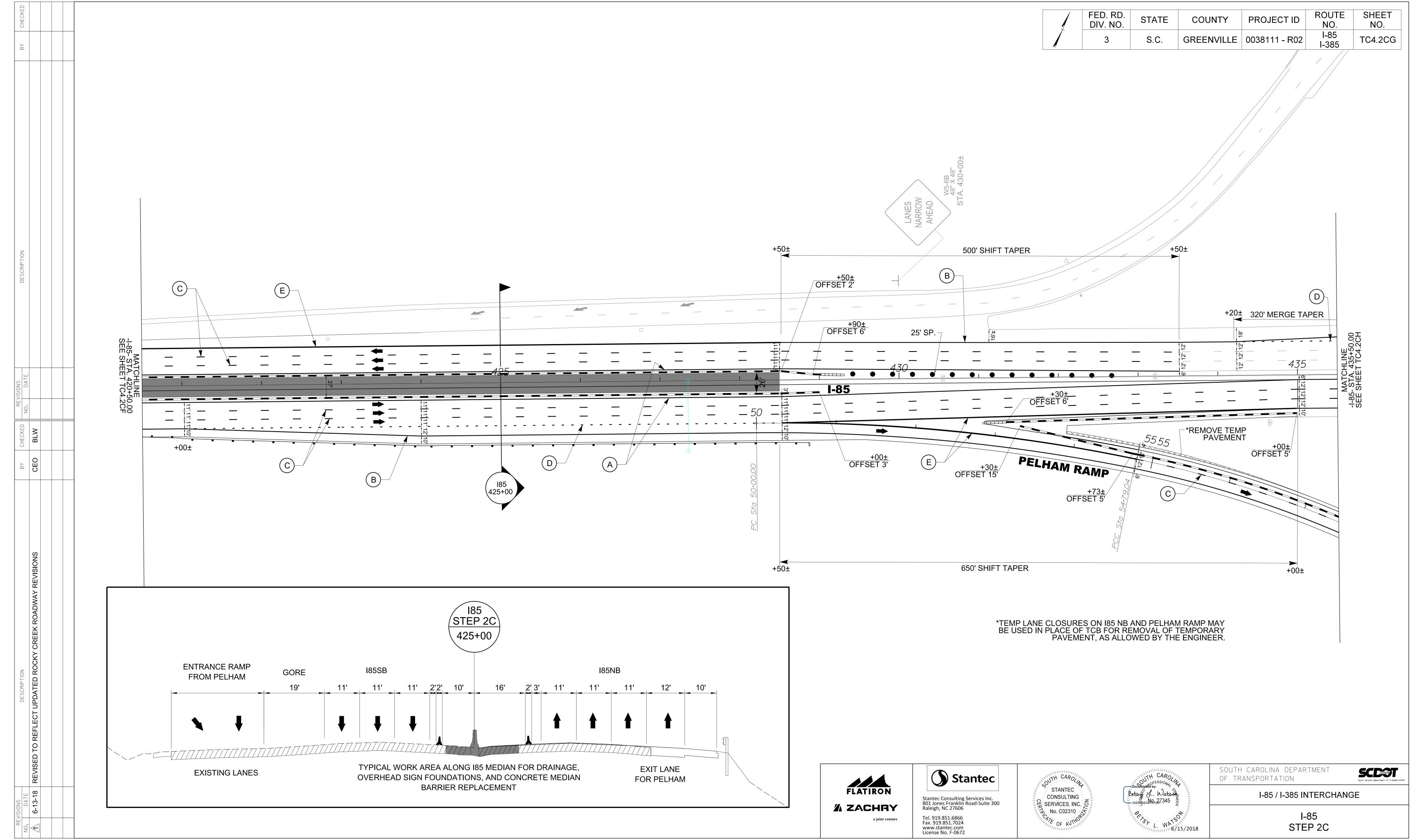

I-85 / I-385 INTERCHANGE

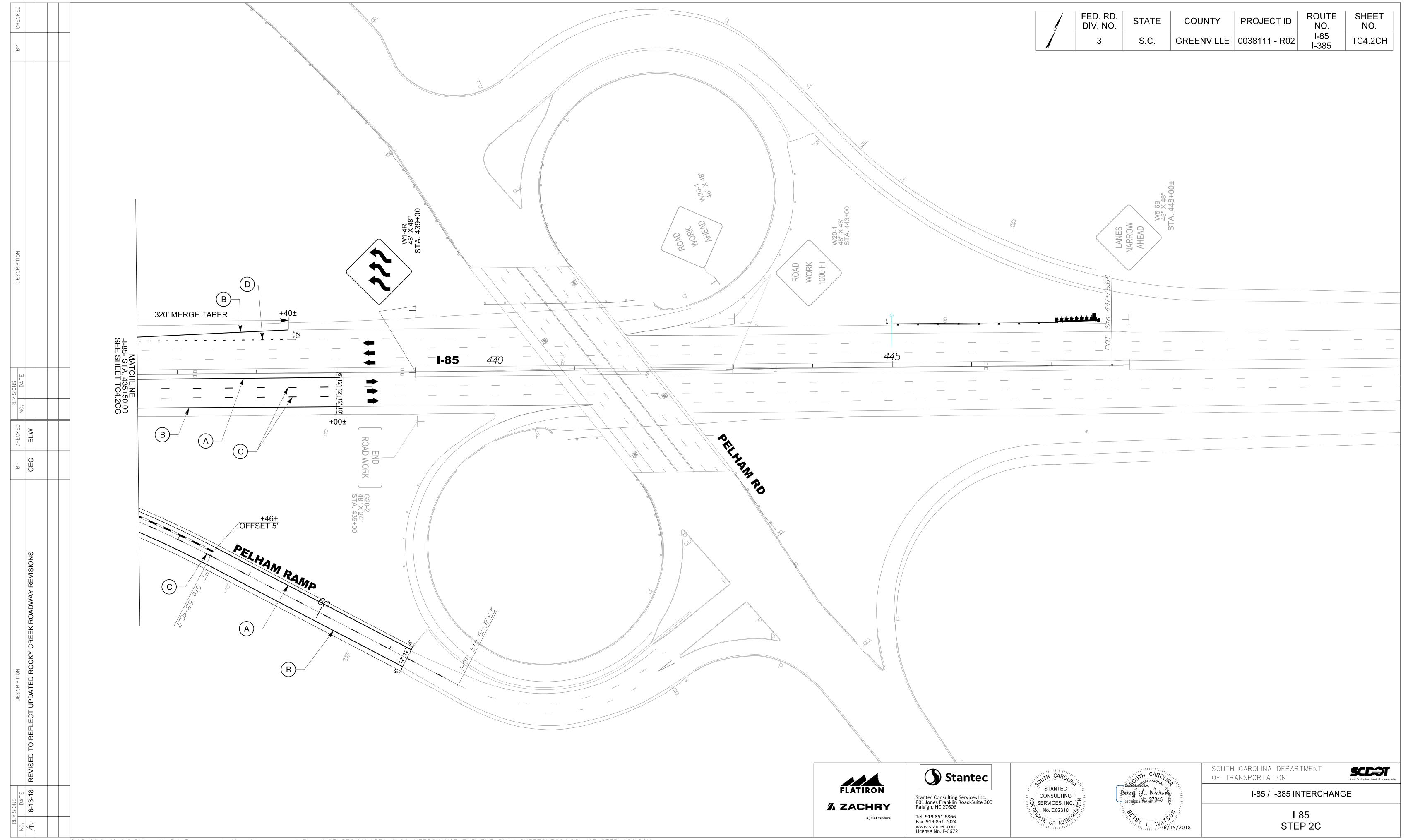

STAGING NARRATIVE

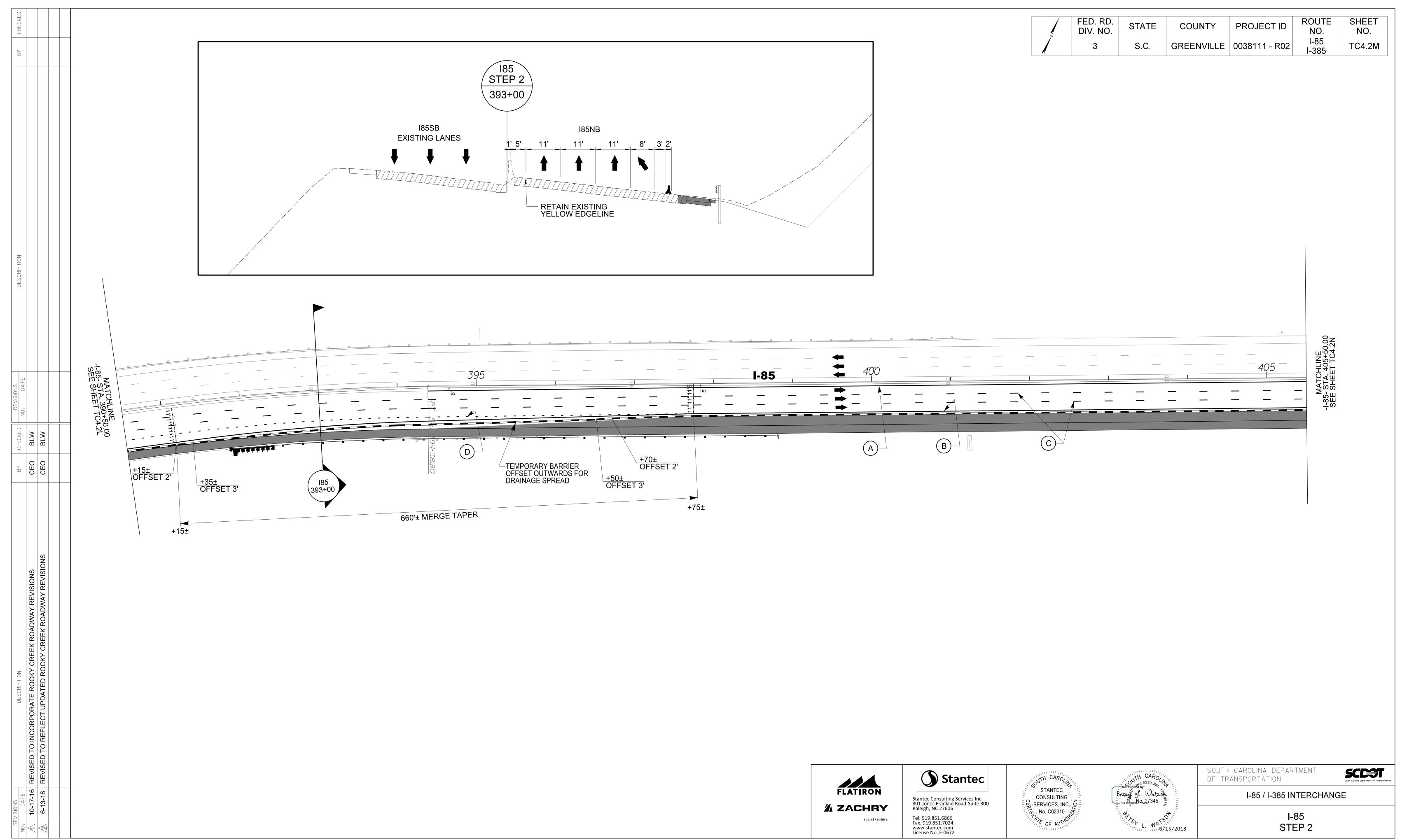
SCE

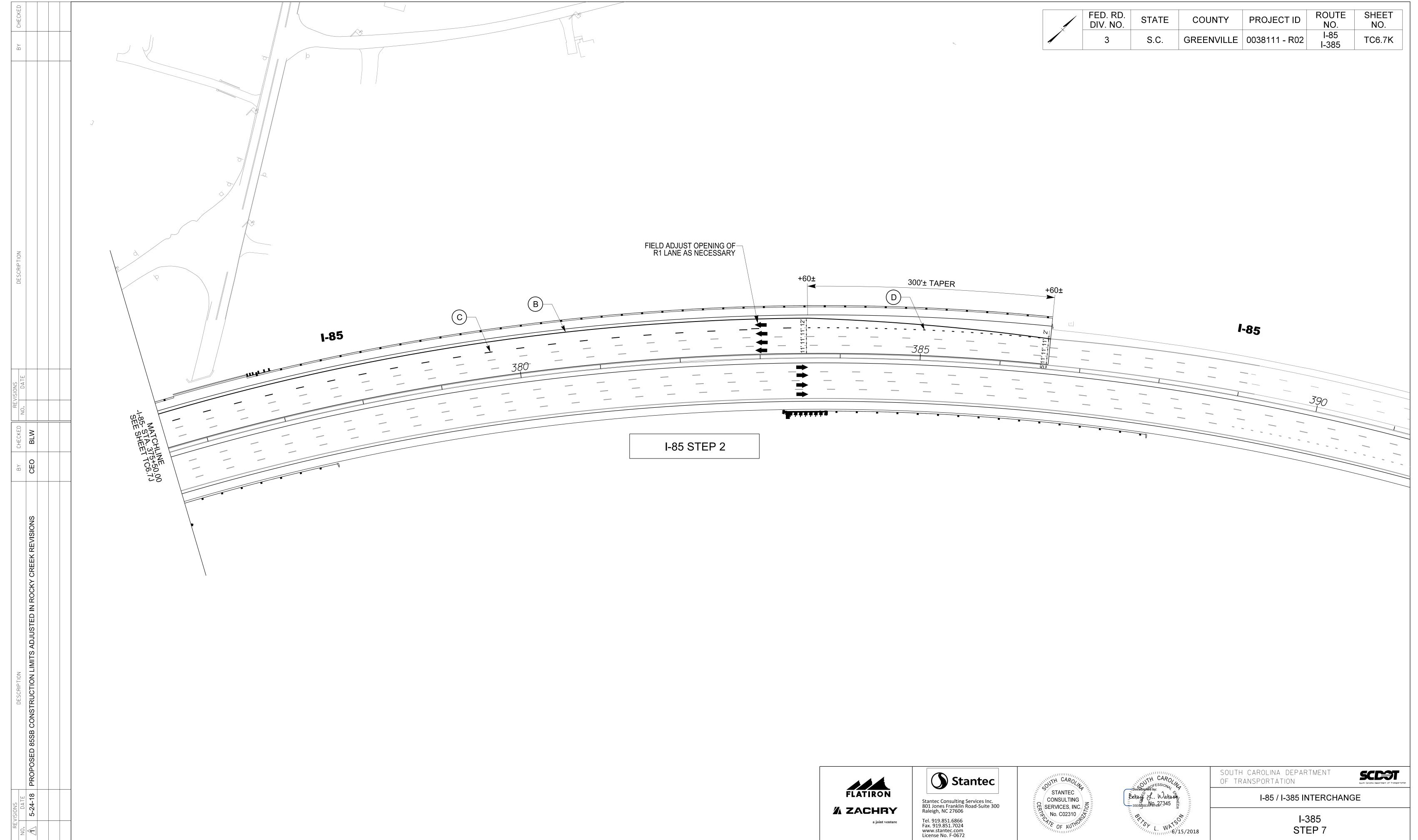


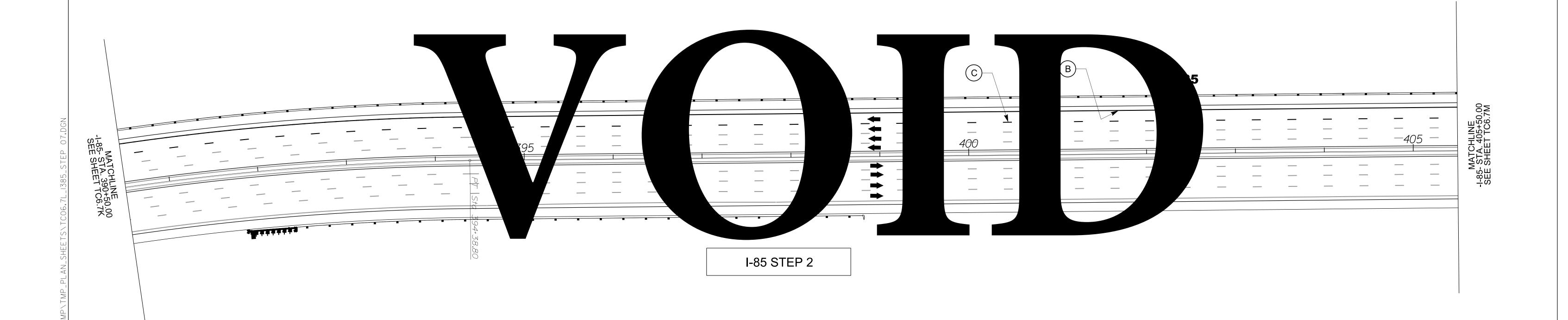

SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

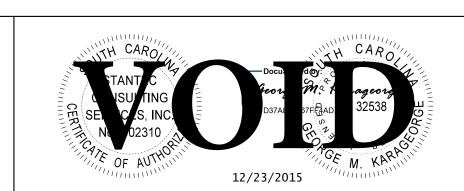

I-85 / I-385 INTERCHANGE


I-85 STEP 2A SCE



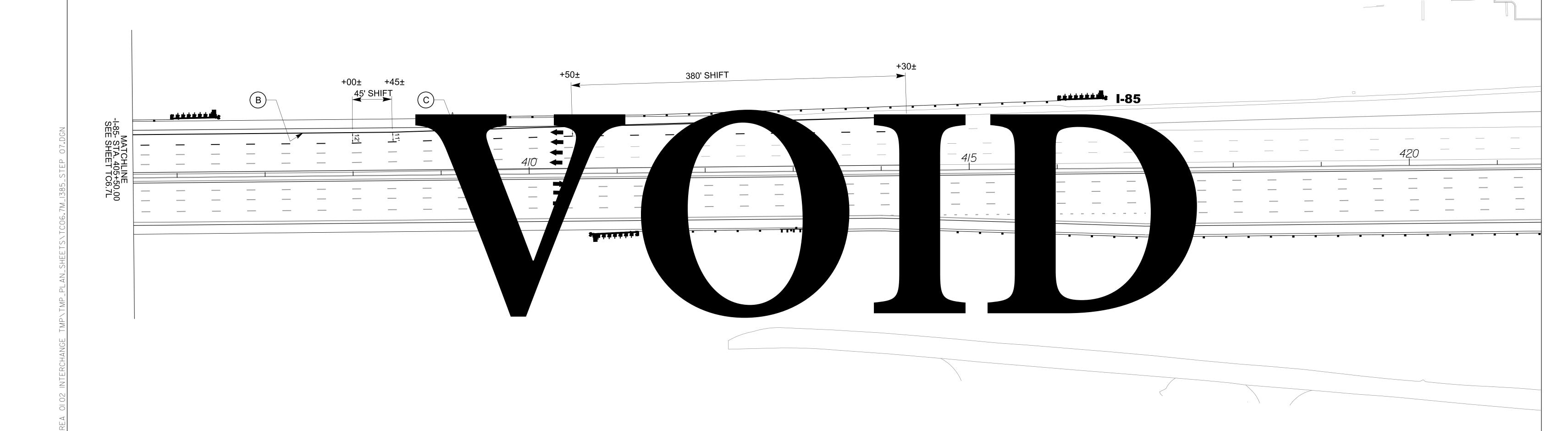






	FED. RD. DIV. NO.	STATE	COUNTY	PROJECT ID	ROUTE NO.	SHEET NO.
	3	S.C.	GREENVILLE	0038111 - R02	I-85 I-385	TC6.7L

SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION


ARTMENT

South Carolina Department of Transportation

I-85 / I-385 INTERCHANGE

I-385 STEP 7

FED. RD. DIV. NO. SHEET NO. PROJECT ID COUNTY I-85 I-385 GREENVILLE | 0038111 - R02 TC6.7M

SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

I-85 / I-385 INTERCHANGE

I-385 STEP 7

SCENT